E series

Coaxial gear reducers and gearmotors

Imperial units - North America Issue

Index

1 - Symbols	2	
2 - Specifications	4	-
3 - Designation	9	-
4 - Service factor fs	10	-
5 - Selection	10	-
6 - Nominal powers and torques (gear reducers)	13	-
7 - Designs, dimensions, mounting positions and lubricant quantities	17	-
8 - Manufacturing programme (gearmotors)	19	
		_

9 - Designs, dimensions, mounting positions and lubricant quantities	41
10 - Combined gear reducer and gearmotor units	43
11 - Radial loads F _{r1} on high speed shaft end	44
12 - Radial loads $F_{\rm r2}$ or axial loads $F_{\rm a2}$ on low speed shaft end	44
13 - Structural and operational details	46
14 - Installation and maintenance	48
15 - Accessories and non-standard designs	50

Further technical information

In the event that you require further technical information regarding any of the under mentioned subjects:

— shaft mounting arrangements;
— oversized hollow low speed shaft;
— square flange for servomotors;
— shaft-mounting arrangements;
— fan cooling;
— bearings lubrication pump;
— bi-metal type thermostat;
— hollow low speed shaft washer;
— hollow low speed shaft washer with locking rings or bush;
— hollow low speed shaft protection;
— design for agitators, aerators, fans;
— design for extruders;
please refer to our detailed product catalogues available by contacting Rossi.

1 - Symbols

L_{WA} L_{pA} η Z Z_{0} J_{0} J M_{N} M_{2}	[dB(A)] [dB(A)] - [start/h] [start/h] [lb ft²] [lb ft²] [lb in] [lb in]	sound power level; mean sound pressure level; efficiency of the gear reducer; frequency of starting; no-load starting frequency; moment of inertia (of mass) of the motor; external moment of inertia (of mass) (gear reducers, couplings, trasmission, gear driven machine) referred to motor shaft; nominal torque of motor; output torque due to the motor's rated power; nominal output torque of gear reducer at speed n ₂ ;	F _{r1} F _{r2} F _{a2} n ₁ n ₂ n _{N2} P ₁ P ₂ P _{N2} Pt _N inta	[lb] [lb] [lb] [rpm] [rpm] [rpm] [hp] [hp] [hp] [hp] [s]	radial load on high speed shaft end; radial load on low speed shaft end; axial load on low speed shaft end; input speed; output speed; nominal output speed; rated motor power; output power of gear reducer; nominal output power of gear reducer; thermal power; nominal thermal power; transmission ratio; nominal transmission ratio; starting time; braking time;
$M_{\rm S}$ $M_{ m f}$	[lb in] [lb in]	starting torque of motor, with direct on-line start; braking torque setting of the motor;	φa ₁ φf ₁	[rad] [rad]	revolution of motor shaft; revolution of motor shaft.
		5 , 5			

Coaxial gear reducers and gearmotors

2I, 3I 32 ... 41* with 2, 3 cylindrical gear pairs

2I, 3I 50 ... 180 with 2, 3 cylindrical gear pairs

Combined gear reducer and gearmotor units

MR 3I + R 2I, 3I

MR 3I + MR 2I, 3I

^{*} gearmotors only

2 - Specifications

Universal mounting (patented; lower feet, upper feet, B5 flange with low speed shaft end shifted forward) see fig. 1

Closer intermediate size steps (for size pairs, standard and strengthened, only one casing and many components in common, changing only the ones allowing higher performances of greater size; improved modular construction) offering sizes closer to every application need and maintaining nearly the same component number for maximum economy of solution; same mounting dimensions for the size pairs

Rigid and precise cast iron monobloc casing (excluding sizes $32 \dots 41$)

Generously proportioned bearings of low speed shaft (bearings and shaft) **in order to withstand high loads** on shaft end

Possibility of mounting large size motors Possibility of square flanges for servomotors Manufacturing and product management flexibility High manufacturing quality standard Minimum maintenance requirements Standard motor to IEC

High, reliable and tested performances

Pinion of final reduction with three bearings (excluding sizes 32 ... 41) **in order to ensure best meshing conditions** (no overhang wheel; maximum rigidity and overloading capacity, maximum reduction of noise level)

This range of gear reducers and gearmotors combines and exalts the traditional qualities of coaxial gear reducers — **compactness**, **economy** —, with the ones deriving from modern design, manufacturing and operating criteria — **strength and suitability also for heaviest applications, universality and ease of application, wide range of sizes, service** — the advantages typically associated with high quality gear reducers produced in large series.

a - Gear reducer

Structural features

Main specifications are:

- universal mounting (patented) with lower and upper feet and B5 flange integral with casing (excluding sizes 32 ... 41 whose mounting is either with feet or with flange always integral with casing);
- low speed shaft end shifted forward (excluding size 40) compared to flange plane, for smaller overhang having same position of external radial load;
- modern conception according to ROSSI MOTORIDUTTORI new modular system see fig. 1 (improved modular construction both for component parts and assembled product);
- maximum compactness and reduced overall dimensions and equal for 2I and 3I — especially in longitudinal direction; coaxial low and high speed shafts excluding sizes 140 ... 180 for which they are slightly misaligned (see ch. 7 and 10);
- monolithic cast iron casing 200 UNI ISO 185 (excluding sizes 32 ... 41) with stiffening ribs and high lubricant capacity;
- gear reducer overall sized so as to accept particularly powerful motors, to permit the transmission of **high** nominal and maximum **torques** and to withstand **high loads on** high and low speed **shaft ends**;
- cylindrical roller or ball bearings on intermediate shafts duly sized for every condition;
- bearings of **low speed shaft** (see table 1) generously proportioned in order to whitstand high loads on low speed shaft end (which is also proportioned for the same purpose);
- pinion of final reduction with three bearings (excluding sizes 32 ... 41) in order to ensure best meshing conditions (no overhang wheel, maximum rigidity and overloading capacity, maximum reduction of noise level);
- gear reducers: input face having machined flange and holes (excluding sizes 32 and 40);
- gearmotors: standard motor to IEC with pinion directly mounted onto shaft end:
- shaft end with parallel key and tapped butt-end hole;
- standard dimensions and compliance with standards;
- grease or oil-bath lubrication; with synthetic grease for sizes 32 ... 41 or synthetic oil sizes 50 ... 81 all supplied **filled with lubricant** for lubrication **«for life»** and with a plug (sizes 32 ... 64) or two plugs (sizes 80 and 81); with synthetic or mineral oil (ch. 16) with filler plug with **valve**, drain and level plug (sizes 100 ... 180); sealed;

- paint: external coating in epoxy powder paint (sizes 32 ... 41) or synthetic paint (sizes 50 ... 180) appropriate for resistance to normal industrial environments and suitable for the application of further coats of synthetic paints; colour blue RAL 5010 DIN 1843; internal protection with epoxy powder paint (sizes 32 ... 41) or epoxy paint (sizes 50 ... 81) suitable to resist synthetic oils or with synthetic paint (sizes 100 ... 180) appropriate to resist mineral or polyalphaolefines synthetic oils;
- possibility of obtaining combined gear reducer and gearmotor units providing high transmission ratios;
- non-standard designs: see ch. 17.

Train of gears:

- -2, 3 cylindrical gear pairs (5, 6 in combined units);
- 7 sizes with final reduction centre distance to R 10 series (32 ... 125, with 6 size pairs: standard and strengthened); 3 sizes with final reduction centre distance to R 20 series (140 ... 180) for a total of **16 sizes**;
- nominal transmission ratios to R 10 series (6,3 ... 6 300) for gear reducers;
- output speeds close to standard number R 20 series (0,45 ... 710 min⁻¹) for gearmotors;
- casehardened and hardened gear pairs in 16 CrNi4 or 20 MnCr5 steel depending on size and 18 NiCrMo5 steel, according to UNI 7846-78:
- helical toothed gear pairs with **ground** profile;
- gears load capacity calculated for tooth breakage and pitting.

Specific standards:

- nominal transmission ratios and main dimensions according to ISO 3-73;
- tooth profiles to ISO 53-74;
- shaft heights to UNI ISO 496-73;
- $-\mbox{ fixing flanges B14}$ and B5 taken from IEC 72.2;
- medium series fixing holes to ISO/R 273);

2 - Specifications

- cylindrical shaft ends (long or short) to ISO/R775 with tapped buttend hole to DIN 332 BI. 2-70, NF E 22.056 excluding d-D diame-
- parallel keys to ISO/R/773-69 except for specific cases of motor-togear reducer coupling where key height is reduced;
- mounting positions taken from IEC 34.7);
- load capacity verified according to DIN 3990, AFNOR E 23-015, ISO 6336 for running time \geq 12 500 h.

Sound levels L_{WA} and \overline{L}_{pA} [dB(A)]

Standard production sound power level \mathbf{L}_{WA} [dB(A)]¹⁾ and mean sound pressure level $\overline{\mathbf{L}}_{\text{pA}}$ [dB(A)]²⁾ (see table 2) for gearmotors assuming nominal load, and input speed $n_1=1~400^3$) rpm. Tolerance +3 dB(A).

If required, gear reducers can be supplied with reduced sound levels (normally 3 dB(A) below tabulated values); consult us. Values in table are valid also for gear reducers.

In case of gearmotor with 4 poles 60 Hz motor (motor supplied by ROSSI MOTORIDUT-TORI) add 1 dB(A) to the values in table.

UT C 640B

A	A	A									8				8		
32	40	41	50	51	63	64	80	81	100	101	125	126	140	160		180	1)
75	90	90	106	106	132	132	160	160	195	195	236	236	250	295		315	Н
-	-	-	71	71	85	85	106	106	132	132	160	160	160	200		200	H_0
16	19	24	24	28	32	38	38	48	48	55	60	70	80	90		100	D
3,75	7,5	9,5	16	22.4	33,5	45	67	90	132	180	265	355	500	710 Ψ :	= 1,4	1000	MN2
125	200	250	355	425	530	670	800	1000	1250	1600	2000	2500	3150	4000		5000	Frz

¹⁾ H, H_0 shaft height [in] D \varnothing low speed shaft end [in] $M_{\rm N2}$ nominal torque [lb in] $F_{\rm 12}$ radial load [lb]

Fig.1

Bearing		Size														
	32	40	41	50	51	63	64	80	81	100	101	125	126	140	160	180
external side	6203	6204	6205	6206	6206	6207	6208	6308	NJ210EC	6310	NJ212EC	30214	32016	32018	32021	32024
internal side	6201	6004	6203	6204	6204E	6205E	6206E	6306	NJ207EC	6308	NJ210EC	30212	32014	32016	32018	32021

Table 1

Size and train of gears		Gearmotors with 4 poles motor									
	\mathbf{L}_{WA} \overline{L}_{pA}	71 L _{WA} \overline{L}_{pA}	\mathbf{L}_{WA} \overline{L}_{pA}	90 L _{WA} \overline{L}_{pA}	100 112 L _{WA} \bar{L}_{pA}	132 L _{WA} \bar{L}_{pA}	160 180 <u>M</u> L _{WA} <u>L</u> _{pA}	180 L 200 L _{WA} \overline{L}_{pA}	225 250 L _{WA} L _{pA}	\mathbf{L}_{WA} \overline{L}_{pA}	
32, 40, 41 2I 3I	65 56 65 55	67 58 66 57	70 61	_	_	_		_	_	_	
50, 51 2l 3l	64 55	68 59 67 58	71 62 70 61	73 64	_ _	_ _	_ _	_ _	_ _	_ _	
63, 64 2I 3I	_ _	68 59	71 62 70 61	75 66 73 64	77 68	_ _	_ _	_ _	_ _	_ _	
80, 81 2I 3I	_ _	_ _	71 62	75 66 74 65	79 70 77 68	80 71	_ _	_ _	_ _	_ _	
100, 101 2I 3I	_ _	_ _	_ _	75 66	79 70 78 69	82 73 80 71	83 74	_ _	_ _	_ _	
125, 126, 140 2I 3I	_ _	_ _	_ _	_ _	79 70	83 74 82 73	85 76 83 74	87 78	89 80	_ _	
160, 180 2I 3I	_ _	<u> </u>	_ _	_ _	_ _	83 74	85 76 84 75	88 79 86 77	90 81 88 79	92 83	

Table 2

¹⁾ To ISO/CD 8579.
2) Mean value of measurement at 1 m from external profile of gear reducer standing in free field on a reflecting surface.
3) For n_1 710 ÷ 1 800 rpm, modify tabulated values thus: n_1 = 710 rpm, -5 dB(A); n_1 = 900 rpm, -4 dB(A); n_1 = 1 120 rpm, -3 dB(A); n_1 = 1 400 rpm, -2 dB(A).

b - Electric motor

Standard design:

- standard motor to IEC;
- asynchronous three-phase, totally-enclosed, externally ventilated, with cage rotor:
- single polarity, frequency 50 Hz, voltage Δ 230 V Y 400 V \pm 10% $^{1)}$ up to size 132, Δ 400 V \pm 10% from size 160 upwards;
- IP 55 protection, insulation class F, temperature rise class B¹¹;
- eff2 efficiency class (except motors with power or power-to-size correspondence not according to standard);
- rated power delivered on continuous duty (S1) and at standard voltage and frequency; maximum ambient temperature 104 °F (40 °C), altitude 3 280 ft: consult us if higher;
- capacity to withstand one or more overloads up to 1,6 times the nominal load for a maximum total period of 2 min per single hour;
- starting torque with direct on-line start at least 1,6 times the nominal one (usually it is higher);
- mounting position B5 and derivates as shown in the following table:
- suitable for the running with inverter (generous electromagnetic sizing, low-loss electrical stamping, phase separators, etc.).
- designs available for every application need: flywheel, independent cooling fan, independent cooling fan and encoder, etc.

For other specifications and details see specific literature.

1) Max and min limits of motor supply; temperature rise class F for some motors with power or power-to-size correspondance not according to standard and motors 200LR 6, 200L 6.

Motor size	Main couplin	3117-71 .A-65, IEC 72.2) Flange Ø P B5 5,51 ¹⁾ 6,3 7,87 ²⁾ 7,87 9,84 11,81 13,78				
	ØD × E B5 0,433 × 0,91 0,551 × 1,18 0,748 × 1,57 5,51¹¹ 6,3 7,87²¹ 0,945 × 1,97 1,102 × 2,36 1,496 × 3,15 7,87 9,84 11,81 1,654 × 4,33 13,78					
63, 71 B5R ³⁾ 71, 80 B5R ³⁾ 80, 90 B5R	0,551 × 1,18	6,3				
90, 100L B5R ³⁾ , 112 B5R ³⁾ 100, 112, 132 B5R ³⁾ 132	1,102 × 2,36	9,84				
160 180, 200 B5R 200	1,654 × 4,33 1,89 × 4,33 2,165 × 4,33	13,78 13,78 15,75				
225, 250 B5R 250 280	2,362 × 5,51 2,559 × 5,51 2,953 × 5,51	17,72 21,65 21,65				

1) The two top holes of gearmotor MR 3I 50, 51 are slotted outwards as shown in the

1) The two top fibles of gearmoon with 31 30, 31 are solded countries as should be drawing alongside.
2) Gearmotors MR 2I 40, 41 have a 6,3 in Ø P; mounting position designation B5A.
3) Motor length Y and overall dimension Y₁ (ch. 9) increase by 0,55 in for size 71, 0,71 in for size 80, 0,87 in for sizes 100 and 112, 1,14 in for size 132.

Brake motor (prefix to designation: F0):

- standard motor to IEC having the same specifications as normal motor
- particularly strong construction to withstand braking stresses; maximum reduction of noise level;
- spring-loaded d.c. electromagnetic brake; feeding from the terminal box; brake can also be independently fed directly from the line;
- braking torque **proportioned** to motor torque (normally $Mf \approx 2 M_{\odot}$) and adjustable by adding or removing pairs of springs;
- high frequency of starting enabled;
- rapid, precise stopping;
- hand lever for manual release with automatic return; removable lever rod.

For other specifications and details see specific literature.

Important: Two-speed motors in the following paragraph are also available in «standard brake motor» design F0 (see relevant table); combinations and gearmotor performance data therefore are the same of ch. 8.

Short time duty (S2) and intermittent periodic duty (S3); duty cycles S4 ... S10

In case of a duty-requirement type S2 ... S10 the motor power can be increased as per the following table; starting torque keeps unchanged.

Short time duty (S2). — Running at constant load for a given period of time less than that necessary to reach normal running temperature, followed by a rest period long enough for motor's return to ambient temperature.

Intermittent periodic duty (S3). — Succession of identical work cycles consisting of a period of running at constant load and a rest period. Current peaks on starting are not to be of an order that will influence motor heat to any significant extent.

Cyclic duration factor =
$$\frac{N}{N+R} \cdot 100\%$$

where: N being running time at constant load,

R the rest period and N + R = 10 min (if longer consult us).

	Duty			Motor siz	-
			63 90	100 132	160 280
S2	duration of running	90 min 60 min 30 min 10 min	1 1 1,12 1,25	1 1,06 1,18 1,25	1,06 1,12 1,25 1,32
S3	cyclic duration factor	60% 40% 25% 15%		1,06* 1,12* 1,25 1,32	
S4	S10			consult u	IS

1) For motor sizes 90LC 4, 112MC 4, 132MC 4, consult us.

These values become 1,12, 1,18 for brake motors (both F0 and FV0)

2 - Specifications

Main specifications of normal (V0 excluded) and brake motors (FV0 excluded) (50 Hz)

Motor size			2 poles - 3 4	00 rpm ¹⁾			4 poles - 1 7	00 rpm ¹⁾			6 poles - 1	100 rpm ¹⁾	
3120	Mf _{max}	P_1	J_0	Z_0	$M_{\rm start}$ $M_{\rm N}$	P ₁	J_0	Z_0	M _{start} M _N	P ₁	J_0	Z_0	M _{start} M _N
	≈ Ib in		≈ Ib ft2				≈ Ib ft2		=		≈ Ib ft2		=
	2) 4)	hp	2)	3)	3)	hp	2)	3)	3)	hp	2)	3)	3)
63 A 63 B	30 30	0,25 0,33	0,00470 0,00705	4 750 4 750	2,5 2,7	0,16 0,25	0,0047 0,0071	12 500 12 500	2,9 2,8	0,12 0,16	0,0094 0,0094	12 500 12 500	2,7 2,7
63 C	30	0,50	0,00705	4 000	3	0,23	0,0071	10 000	2,6	- 0,16	0,0094	12 300	
71 A 71 B	65 65	0,5 0,75	0,00940 0.01175	4 000 4 000	3 3	0,33 0,5	0,0118 0.0165	10 000 10 000	2,6 2,5	0,25 0,33	0,0282 0.0282	11 200 11 200	2,4 2,1
71 C	65	1	0,01410	3 000	2,8	0,75	0,0188	8 000	2,4	0,5	0,0306	10 000	2,1
80 A 80 B	140 140	1 1,5	0,01880 0,02585	3 000	2,5 2,2	0,75 0,75	0,0353 0.0447	8 000 7 100	2,6 2,9	0,5 0,75	0,0447 0,0564	9 500 9 000	2,1 2,1
80 C 80 D	140	2	0,03055	2 500	2,9	1,5 2	0,0588 0.0664	5 000 5 000	3 2,7	1 1 _	0,0776	7 100	2,1
90 S	140	2	0,03055	2 500	2,9	1,5	0,0588	5 000	3	1	0,0776	7 100	2,1
90 SB 90 L	140 140	2,5	0,03290 –	2 500	2,8 -	_ 2	- 0.0964	 4 000	_ 2,7	_ 1,5	_ 0,1175	5 300	2,3
90 LA 90 LB	355 355	3 4	0,03995 0.00447	2 500 1 800	2,9 2,8	_ 2,5	0.1034	4 000	2,7		=	=	
90 LC	355	-	, <u> </u>			3	0,1034	3 150	2,8	2	0,1293	5 000	2,5
100 LA 100 LB	355 355	4 5,4	0,08226 0,10811	1 800 1 500	2,7 3,9	3 4	0,1199 0,1622	3 150 3 150	2,6 2,9	2 2,5	0,2444 0,2773	3 550 3 150	2,6 2,5
112 M	670 ⁵⁾	5,4	0,10811	1 500	3,9	5,4	0,2280	2 500	3,1	3	0,3337	2 800	2,9
112 MB 112 MC	355 670	7,5 10	0,12691 0,17861	1 400 1 060	3,9 3,9	- 7,5	- 0,2703	1 800	3,1	4	0,3972	2 500	2,9
132 S 132 SA	670 670	_ 7,5	_ 0,23267	_ 1 250	_ 2,4	7,5 -	0,5076	1 800	3	4_	0,5076	2 360	2,3
132 SB	670	10	0,27732	1 120	3	-	_ _	_	_	_	_ _	_	_
132SC 132 M	670 1 320	12,5 15	0,32197 0,41833	1 060 850	3,7 3,7	_ 10	_ 0,7591	1 180	3,2	5,4	_ 0,7591	1 420	2,9
132 MB 132 MC	1 320 1 320	20 -	0,53114 –	710	3,8 -	12,5 15	0,9189 0,9965	1 070 900	3 3,4	7,5 10	0,9189 1,2503	1 260 1 000	2,6 2,4
160 MR	2 240	15	0,91657	450	2,1	_	-	_	_	_	- 0.0500	_	_
160 M 160 L	2 240 2 240	20 25	1,03408 1,15159	425 400	2,4 2,6	15 20	1,6921 1,9741	900 800	2 2,3	10 15	2,2562 2,7967	1 120 950	2 2,3
180 M 180 L	2 240 3 550	30 -	1,33960 -	355 -	2,5 -	25 30	2,3267 3,0552	630 500	2,3 2,4	_ 20	_ 3,5253	- 630	_ 2,3
200 LR 200 L	3 550 3 550	40 50	0,43478 4,70035	160 160	2,4 2,5	- 40	_ 4.7004	- 400	_ 2,4	25 30	4,4653 5.6404	500 400	2,1 2,4
200 LG	-	-	-,70000	-	- -	50	7,9906	- 400	2,3		- 5,0404	- 400	
225 S 225 M	-	_	_ _	_	_	50 60	7,5206 9,6357	_ _	2,3 2,4	40	_ 	_	_ 2,4
250 M	-	_	_	_	-	75	12,2209	_	2,3	50	13,3960	_	2,6
280 S	-	_	-	-	_	100	21	_	2,5	60	20	-	2,4

Frequency of starting z

As a general rule, the maximum permissible frequency of starting z for direct on-line start (maximum starting time $0.5 \div 1$ s) is 63 starts/h up to size 90 (valid also for $\mathbf{V0}$), 32 starts/h for sizes 100 ... 132 and 16 starts/h for sizes 160 ... 280 (star-delta starting is advisable for sizes 160 .. 280).

Brake motors can withstand a starting frequency double that of normal motors as described above FV0 included).

A greater frequency of starting z is often required for brake motors (**FV0** excluded). In this case it is necessary to verify that:

$$z \le z_0 \cdot \frac{J_0}{J_0 + J} \cdot \left[1 - \left(\frac{P}{P_1} \right)^2 \cdot 0.6 \right]$$

 z_0 , J_0 , P_1 are shown in the tables at pages 10 and 11;

J is the external moment of inertia (of mass) in kg m², (gear reducers, couplings, driven machine) referred to the motor shaft;

P is the power in kW absorbed by the machine referred to the motor shaft (therefore taking into account efficiency).

If during starting the motor has to overcome a resisting torque, verify the frequency of starting by means of the following formula:

$$z \le 0.63 \cdot z_0 \cdot \frac{J_0}{J_0 + J} \cdot \left[1 - \left(\frac{P}{P_1} \right)^2 \cdot 0.6 \right]$$

Specific standards:

- nominal powers and dimensions to IEC 72-1, for mounting positions IM B5, IM B14 and derivates;
- nominal performances and running specifications to IEC 34-1;
- protection to IEC 34-5;
- mounting positions to IEC 34-7;
- sound levels to CENELEC 60034-9 (IEC 34.9, DIN 57530 pt. 9);
- balancing and vibration velocity (vibration under standard rating N) to IEC 34-14; motors are balanced with half key inserted into shaft extension;
- cooling to IEC 34-6: standard type IC 411; type IC 416 for nonstandard design with axial independent cooling fan.

¹⁾ Motor speed on the basis of which the gearmotor speeds n_2 have been calculated.
2) Moment of inertia values J_0 , braking torque values M are valid for brake motor (size \leq 200L), only.
3) For size \leq 132, $M_{\text{start}}/M_{\text{N}}$ values and no load starting frequency z_0 [start/h] values are valid for brake motor, only.
4) Motor is usually supplied with lower braking torque setting (see **specific literature**).

⁵⁾ For 2 poles 4 daN m.

3 - Designation

The designation is to be completed by stating mounting position, only when ${\bf differing}$ from ${\bf B3}^{1)}$ or ${\bf B5}$ (for sizes 32 ... 41, only).

E.g.: R 2I 50 UC2A/24,1 mounting position B8;

MR 3I 140 UC2A - 160M 4 380 B5/68,6 mounting position V5.

Where brake motor is required, insert the letters F0.

E.g.: MR 3I 51 UC2A - F0 80B 4 230.400 B5/61,6

Where progressive start motor is required, insert the letters V0 before motor size.

E.g.: MR 3I 50 UC2A - V0 80A 2 230.400 B5/135

Where progressive start brake motor is required, insert the letters FV0 before motor size.

E.g.: MR 3I 50 UC2A - FV0 80A 2.4 400 B5/135-67,4

Where the motor is supplied by the Buyer, omit voltage, and add: ${\bf motor\ supplied\ by\ us.}$

E.g.: MR 3I 51 UC2A - 80B 4 ... B5/61,6 motor supplied by us. In the event of a gear reducer or gearmotor being required in a design differing from those stated above, specify it in detail (ch. 15).

To make things easier, the designation of mounting position (see ch. 7, 9) is referred to foot mounting only, even if gear reducers are in universal mounting (excluding sizes 32 ... 41).
 Size 41 available as gearmotor only.

4 - Service factor fs

Service factor *f*s takes into account the different running conditions (nature of load, running time, frequency of starting, other considerations) which must be referred to when performing calculations of gear reducer selection and verification.

The powers and torques shown in the catalogue are nominal (i.e. valid for fs = 1) for gear reducers, corresponding to the fs indicated for gearmotors.

Details of service factor, and considerations.

Given fs values are valid for

- electric motor with cage rotor, direct on-line starting up to 12,5 hp, star-delta starting for higher power ratings; for direct on-line starting above 12,5 hp or for brake motors, select fs according to a frequency of starting double the actual frequency; for internal combustion engines multiply fs by 1,25 (multicylinder) or 1,5 (singlecylinder);
- maximum time on overload 15 s; on starting 3 s; if over and/or subject to heavy shock effect, consult us;
- a whole number of overload cycles (or start) imprecisely completed in 1, 2, 3 or 4 revolutions of low speed shaft; if precisely a continuous overloads should be assumed;
- standard level of reliability; if a higher degree of reliability is required (particularly difficult maintenance conditions, key importance of gear reducer to production, personnel safety, etc.) multiply fs by 1,25 ÷ 1,4.

Motors having a starting torque not exceeding nominal values (stardelta starting, particular types of motor operating on direct current, and single-phase motors), and particular types of coupling between gear reducer and motor, and gear reducer and driven machine (flexible, centrifugal, fluid and safety couplings, clutches and belt drives) affect service factor favourably, allowing its reduction in certain heavy-duty applications; consult us if need be.

Service factor based: on the **nature of load** and **running time** (this value is to be multiplied by the values shown in the tables alongside).

plied by	Title values shown in the tables along	ysiue).								
Nat	ure of load of the driven machine		Run	ning time	3 h/d 8÷16 h/d 16÷24 h/d 1,18 1,32					
Ref.	Description	3 150 ≤ 2 h/d	6 300 2÷4 h/d	12 500 4÷8 h/d						
а	Uniform	0,8	0,9	1	1,18	1,32				
b	Moderate overloads (1,6 × normal)	1	1,12	1,25	1,5	1,7				
С	Heavy overloads (2,5 × normal)	1,32	1,5	1,7	2	2,24				

...: on **frequency of starting** referred to the nature of load.

Load ref.		Frequency of starting z [starts/h]									
	2	4	8	16	32	63	125	250			
а	1	1,06	1,12	1,18	1,25	1,32	1,4	1,5			
b	1	1	1,06	1,12	1,18	1,25	1,32	1,4			
С	1	1	1	1,06	1,12	1,18	1,25	1,32			

a - Gear reducer

Determining the gear reducer size

- Make available all necessary data: required output power P_2 of gear reducer, speeds n_2 and n_1 , running conditions (nature of load, running time, frequency of starting z, other considerations) with reference to ch. 4.
- Determine service factor fs on the basis of running conditions (ch. 4).
- Select the gear reducer size (also, the train of gears and transmission ratio i at the same time) on the basis of n_2 , n_1 and of a power P_{N2} greater than or equal to $P_2 \cdot f$ s (ch. 6).
- Calculate power P_1 , required at input side of gear reducer using the formula $\frac{P_2}{\eta}$, where $\eta = 0.96 \div 0.94$ is the efficiency of the gear reducer (ch. 13).

When for reasons of motor standardization, power P_1 applied at input side of gear reducer turns out to be higher than the power required (considering motor/gear reducer efficiency), it must be certain that this excess power applied will never be required, and frequency of starting z is so low as not to affect service factor (ch. 4).

Otherwise, make the selection by multiplying $P_{\rm N2}$ by $\frac{P_{\rm 1}}{P_{\rm 1}}$ required

Calculations can also be made on the basis of torque instead of power; this method is even preferable for low n_2 values.

Verifications

- Verify possible radial loads F_{r1}, F_{r2} by referring to instructions and values given in ch. 11 and 12.
- When the load chart is available, and/or there are overloads due to starting on full load (mainly for high inertias and low transmission ratios), braking, shocks, gear reducers in which the low speed shaft becomes driving member due to driven machine inertia, or other static or dynamic causes verify that the maximum torque peak (ch. 13) is always less than $2 \cdot M_{\rm N2}$; if it is higher or cannot be evaluated in the above cases, install a safety device so that $2 \cdot M_{\rm N2}$ will never be exceeded.
- Verify, when fs < 1, that torque M_2 is less or equal to M_{N2} value valid for $n_1 \le 90$ rpm (see page 16).

Designation for ordering

When ordering give the complete designation of the gear reducer as shown in ch. 3. The following information is to be given: design and mounting position (only when different from B3 or B5) (ch. 7); input speed n_1 if greater than 1 400 rpm or less than 355 rpm; possible non-standard designs (ch. 15).

E.g.: R 2I 50 UC2A/24,1 mounting position B8 R 2I 100 UC2A/8,11 design for agitators $n_1 = 1800$ rpm.

5 - Selection

b - Gearmotor

Determining the gearmotor size

— Make available all necessary data: required output power P_2 of gearmotor, speed n_2 , running conditions (nature of load, running time, frequency of starting z, other considerations) with reference to ch. 4.

In the case of **gearmotors for traverse movements** it is important when determining required power P_2 not to overstimate, and to take into account starting torque (see "Considerations on selection"): normally consider motor power for duty **S3**.

- Determine service factor fs on the basis of running conditions (ch. 4).
- Select the gearmotor size on the basis of n₂, fs and of a power P₁ greater than or equal to P₂ (ch. 8).

If power P_2 required is the result of a precise calculation, the gearmotor should be selected on the basis of a power P_1 equal to or greater than $\frac{P_2}{\eta}$, where $\eta=0.96\div0.94$ is gear reducer efficiency (ch. 13). The

torque value M_2 has been calculated taking into account efficiency. When for reasons of motor standardization, power P_1 available in catalogue is much greater than the power P_2 required, the gearmotor can

be selected on the basis of a lower service factor ($fs \cdot \frac{P_2 \text{ required}}{P_1 \text{ available}}$) provided it is certain that this excess power available will never be

provided it is certain that this excess power available will never be required and frequency of starting z is low enough not to affect service factor (ch. 4).

Calculations can also be made on the basis of torque instead of power; this method is even preferable for low n_2 values.

Verifications

- Verify possible radial load F_{r2} referring to directions and values given in ch. 12.
- For the motor, verify frequency of starting z when higher than that normally permissible, referring to directions and values given in ch. 2b; this will normally be required for brake motors only.
- When a load chart is available, and/or there are overloads due to starting on full load (especially with high inertias and low transmission ratios), braking, shocks, gear reducers in which the low speed shaft becomes driving member due to driven machine inertia, or other static or dynamic causes verify that the maximum torque peak (ch. 13) is always less than $2 \cdot M_{\text{N2}} (M_{\text{N2}} = M_2 \cdot f\text{s}$, see ch. 8); if it is higher or cannot be evaluated in the above instances, install suitable safety devices so that $2 \cdot M_{\text{N2}}$ will never be exceeded.

Designation for ordering

When ordering give the complete designation of the gearmotor as shown in ch. 3. The following information is to be given: design and mounting position of gearmotor (only if different from B3 or B5) (ch. 9), voltage and mounting position of motor (B5 or B5A or B5R), and non-standard designs, if any (ch. 15).

E.g.: MR 3I 50 UC2A - 80A 4 230.400 B5/67,4 mounting position R8

MR 3I 50 UC2A - F0 80A 4 230 400 B5/67,4

MR 3I 140 UC2A - 160L 4 400 B5/68,6 2nd motor shaft end

Where motor is supplied by the Buyer, do not specify voltage, and complete the designation with the words: motor supplied by us. E.g.: MR 3I 140 UC2A - 160L 4 ... B5/68,6 motor supplied by us.

The motor supplied by the Buyer must be to **UNEL standards** with mating surfaces machined under accuracy rating (UNEL 13501-69) and is to be sent **carriage and expenses paid to our factory** for fitting to the gear reducer.

c - Combined gear reducer and gearmotor units

Combined units are obtained by coupling together **normal single** gear reducers and/or gearmotors so as to produce low output speeds.

Determining the final gear reducer size and the combined unit

- Make available all necessary data relating to the output of the final gear reducer: required torque M_2 , speed n_2 , running conditions (nature of load, running time, frequency of starting z, other considerations) with reference to ch. 4.
- Determine service factor fs on the basis of running conditions (ch. 4).
- Select the final gear reducer size and basic reference, and the initial gear reducer or gearmotor size (ch. 11) on the basis of a torque value M_{N2} greater than or equal to $M_2 \cdot fs$.

Selection of initial gear reducer or gearmotor

— Calculate the speed n_2 and the required power P_2 at the initial gearmotor output using the following formulae:

$$n_2$$
 initial = n_2 final · i final

$$P_2$$
 initial = $\frac{M_2 \text{ final} \cdot n_2 \text{ final}}{63 \ 025 \cdot \eta \text{ final}}$ [hp]

- In the case of gear reducer, make available input speed n_1 at the input of the initial gear reducer.
- Make the selection of initial gear reducer or gearmotor as shown in ch. 5 paragraph a) or b) bearing in mind that sizes are pre-established (and cannot be changed on account of couplings being standard) and that it is not necessary to verify service factor.

Designation for ordering

When ordering combined units, the single gear reducers or gearmotors must be designated **separately**, as indicated in ch. 5 paragraph a) or b) bearing in mind the following:

- insert the words coupled with between the final gear reducer designation and that of the initial gear reducer or gearmotor;
- always add the words without motor to the final gear reducer designation; select the design oversized B5 flange for the initial gear reducer or gearmotor (for size 63 also add -Ø 28); in case of initial gear reducer or gearmotor size 40 select with flange FC1A design.

E.g.:MR 3I 160 UC2A - 132MB 4 ... B5/28,2 without motor coupled with R 2I 80 UC2A/15,7 oversized B5 flange

MR 3I 125 UC2A - 112M 4 ... B5/41,1 without motor mounting position V6 coupled with

MR 2I 63 UC2A - 80B 4 230.400 B5/57,7 oversized B5 flange - \varnothing 28, mounting position V6

Considerations on selection

Motor power

Taking into account the efficiency of the gear reducer, and other drives — if any — motor power is to be as near as possible to the power rating required by the driven machine: accurate calculation is therefore recommended.

The power required by the machine can be calculated, seeing that it is related directly to the power-requirement of the work to be carried out, to friction (starting, sliding of rolling friction) and inertia (particularly when mass and/or acceleration or deceleration are considerable). It can also be determined experimentally on the basis of tests, comparisons with existing applications, or readings taken with amperometers or wattmeters.

An oversized motor would involve: a greater starting current and consequently larger fuses and heavier cable; a higher running cost as power factor (cos ϕ) and efficiency would suffer; greater stress on the drive, causing danger of mechanical failure, drive being normally proportionate to the power rating required by the machine, not to motor power.

Only high values of ambient temperature, altitude, frequency of starting or other particular conditions require an increase in motor power.

5 - Selection

Input speed

Maximum input speed must be always $n_1 \le 2\,800$ rpm; for intermittent duty or for particular needs higher speeds may be accepted: consult us.

For n_1 higher than 1 800 rpm, **power** and **torque** ratings relating to a given transmission ratio vary as shown in the table alongside. In this case no loads should be imposed on the high speed shaft end.

For variable $n_{\rm 1}$, the selection should be carried out on the basis of $n_{\rm 1\ max}$; but it should also be verified on the basis of $n_{\rm 1\ min}$.

When there is a belt drive between motor and gear reducer, different input speeds n_1 should be examined in order to select the most suitable unit from engineering and economy standpoints alike (our catalogue favours this method of selection as it shows a number of input speed values n_1 relating to a determined output speed n_{N2} in the same section). Input speed should not be higher than 1 800 rpm, unless conditions make it necessary; better to take advantage of the transmission, and use an input speed lower than 900 rpm.

	R	2 I	R 3I				
n_1							
rpm	P_{N2}	M_{N2}	P_{N2}	M_{N2}			
2 800 2 240 1 800	1,4 1,25 1,12	0,71 0,8 0,9	1,7 1,4 1,18	0,85 0,9 0,95			
1 400	1	1	1	1			

6 - Nominal powers and torques (gear reducers)

									0		:					حيب	
						No	minal ou	oa tuatu		reduce P _№ hp	r size						
n _{N2}	n_1	i _N				No	minal ou	utput tor	que i	Μ̃ _№ Ibi ••• /i	in						
rp	.		32	40	50	51	63	64	80	81	100	101	125	126	140	160	180
280	1 800	6,3	1,32 292 21/6,33	2,29 489 21/6,08	4,51 1 030 21/6,52	5,8 1 330 21/6,52	9,8 2 170 21/6,36	11,6 2 590 21/6,36	20,4 4 360 2 /6,1	24* 5 100 21/6,1	38,4* 8 700 21/6,5	45,8** 10 400 21/6,5	79** 17 500 21/6,35	91** 20 200 21/6,35	-	184** 40 800 21/6,34	-
224	1 800	8	1,03 292 2V8,12	2,22 590 21/7,61	4,39 1 250 21/8,13	6,2 1 750 21/8,13	9,4 2 640 21/8,05	11,8 3 320 21/8,05	19,7 5 300 21/7,64	24,7* 6 600 21/7,64	37* 10 500 21/8,11	48,6** 13 800 21/8,11	75** 21 000 21/8,03	94** 26 600 21/8,03	_	195** 55 600 21/8,12	200** 59 100 2l/8,43
180	1 800	10	0,77 292 21/10,8	1,73 590 21/9,76	3,43 1 250 21/10,4	4,89 1 780 21/10,4	7,2 2 640 21/10,5	9,7 3 540 21/10,5	15,4 5 300 21/9,79	20,6 7 100 21/9,79	28,9 10 500 21/10,4	39* 14 200 21/10,4	58* 21 000 21/10,4	77** 28 200 21/10,4	96** 33 500 21/9,92	143** 53 800 21/10,7	200** 75 600 21/10,8
	1 120	6,3	0,85 302 21/6,33	1,46 500 21/6,08	2,86 1 050 21/6,52	3,69 1 350 21/6,52	6,2 2 210 21/6,36	7,4 2,650 21/6,36	12,9 4 430 21/6,1	15,2 5 200 21/6,1	24,3 8 900 2l/6,5	29,2 10,700 21/6,5	49,6 17 700 21/6,35	58* 20 700 21/6,35	_	117** 41 600 21/6,34	_
140	1 800	12,5	0,58 276 21/13,5	1,3 590 21/13	2,86 1 250 21/12,5	3,97 1 730 21/12,5	5,9 2 640 21/12,7	7,7 3 440 21/12,7	11,6 5 300 21/13	15,1 6 900 21/13	24,1 10 500 21/12,5	31,4 13 700 21/12,5	47,3 21 000 21/12,7	61* 27 300 21/12,7	85** 38 700 21/12,9	21/12,1	142** 62 100 21/12,5
	1 120	8	0,66 302 21/8,12	1,42 610 21/7,61	2,83 1 290 21/8,13	3,91 1 790 21/8,13	6 2 720 21/8,05	7,3 3 320 21/8,05	12,7 5 400 21/7,64	15,4 6 600 21/7,64	23,7 10 800 21/8,11	30,9 14 100 21/8,11	47,9 21 600 21/8,03	59* 26 600 21/8,03	-	125** 57 300 21/8,12	127** 60 300 21/8,43
112	1 800	16	-	0,98 560 21/16,2	2,26 1 290 21/16,3	2,94 1 680 21/16,3	4,73 2,720 21/16,4	5,8 3 330 21/16,4	9,9 5 400 21/15,7	12,3 6 700 21/15,7	18,9 10 800 21/16,3	25,5 14 600 21/16,3	39,9 21 300 21/15,2	52 27 600 21/15,2	72** 39 100 2l/15,5	21/15,9	135** 75 600 21/16
	1 120	10	0,5 302 21/10,8	1,11 610 21/9,76	2,21 1 290 21/10,4	3,13 1 830 21/10,4	4,63 2,720 21/10,5	6,2 3 650 21/10,5	9,9 5 400 21/9,79	13,2 7 300 21/9,79	18,5 10 800 21/10,4	25 14 600 21/10,4	36,9 21 600 21/10,4	49,4 29 000 21/10,4	61* 34 200 21/9,92	92* 55 500 21/10,7 75*	127** 77 100 21/10,8
	710	6,3	0,55 310 21/6,33	0,94 510 21/6,08	1,85 1 070 21/6,52	2,39 1 380 21/6,52	3,92 2 210 21/6,36	4,7 2 660 21/6,36	8,2 4 430 21/6,1	9,8 5 300 21/6,1	15,7 9 100 21/6,5	18,9 10 900 21/6,5	31,4 17 700 21/6,35	37,1 20 900 21/6,35	_	42 400 21/6,34	_
90	1 800	20	-	0,89 620 21/19,9	1,88 1 290 21/19,6	2,59 1 780 21/19,6	3,88 2,720 2l/20	5,1 3 550 21/20	7,5 5 400 21/20,8	9,7 7 100 21/20,8	15,7 10 800 21/19,6	20,6 14 100 21/19,6	29,8 19 800 21/19	2 l/ 19	52 34 400 21/19	21/19	101* 68 900 21/19,5
	1 120	12,5	0,37 283 21/13,5	0,83 610 21/13	1,84 1 290 21/12,5	2,54 1 780 21/12,5	3,8 2,720 21/12,7	4,96 3 550 21/12,7	7,4 5 400 21/13	9,7 7 100 21/13	15,4 10,800 21/12,5	20,2 14 200 21/12,5	30,3 21 600 21/12,7	39,3 28 100 21/12,7	55 39 800 21/12,9	21/12,1	90* 63 300 21/12,5
	710	8	0,43 310 21/8,12	0,93 630 21/7,61	1,85 1 330 21/8,13	2,53 1 830 21/8,13	3,92 2 800 21/8,05	4,65 3 320 21/8,05	8,3 5 600 21/7,64	9,8 6 600 21/7,64	15,4 11 100 2l/8,11	20 14 400 2l/8,11	31,2 22 300 21/8,03	37,3 26 600 21/8,03	_	82 58 900 21/8,12	21/8,43
71	1 800	25	-	-	-	-	-	-	_	-	-	-	24,6 22,600 3l/26,2	32,9 30 300 31/26,2	38,2 39 200 3l/29,3	68 60 500 31/25,5	76 78 200 31/29,5
	1 800	25	_	0,67 620 21/26,5	1,42 1 190 21/24,1	1,86 1 570 21/24,1	2,89 2,530 21/25	3,54 3 100 21/25	5,6 5 100 21/26	6,8 6 200 21/26	12 10 100 21/24,1	14,6 12 300 21/24,1	21,3 18 100 21/24,3	_	_	_	_
	1 120	16	-	0,62 570 21/16,2	1,45 1 330 21/16,3	1,87 1,720 21/16,3	3,03 2 800 21/16,4	3,67 3 400 21/16,4	6,4 5 600 21/15,7	7,8 6 900 21/15,7	12,1 11 100 21/16,3	16,4 15 000 2l/16,3	25,6 21 900 2l/15,2	21/15,2	46,1 40 200 21/15,5	21/15,9	86 77 100 21/16
	710	10	0,32 310 21/10,8	0,72 630 21/9,76	1,45 1 330 21/10,4	2,04 1 880 21/10,4	3,02 2 800 21/10,5	4,05 3 760 21/10,5	6,4 5 600 21/9,79	8,6 7 500 21/9,79	12,1 11 100 21/10,4	16,4 15 100 21/10,4	24 22 300 21/10,4	32,2 29 800 21/10,4	39,6 34 900 21/9,92	21/10,7	2l/10,8
56	1 800	31,5	-	_ 0.5	1,21 1 350 31/31,9	1,7 1 900 31/31,9	2,38 2 850 3l/34,2	3,2 3 820 31/34,2	4,97 5 700 31/32,8	6,7 7 700 31/32,8	10 11 200 3l/32	13,6 15 200 31/32	18,9 22 600 3l/34,1	25,4 30 300 3l/34,1	37,6 42 700 31/32,4	53 60 500 3l/32,7	72 85 400 31/33,9
	1 800	31,5	_	0,5 580 21/33,1 0,57	1,08 1 110 21/29,3 1,21	- 1,66	2,04 2 280 2l/31,9 2,49	- 3,25	4,1 4 560 21/31,8 4,78	- 6,2	9,1 9 400 21/29,3 10,1	13,2	_ 19	23,3	33	- 46,8	- 64
	1 120	20	- 0,24	640 21/19,9 0,54	1 330 21/19,6	1,66 1 830 21/19,6 1,65	2,49 2,800 2l/20 2,48	3,23 3 660 2l/20 3,24	5 600 21/20,8 4,85	7 300 21/20,8 6,3	11 100 21/19,6 10	14 600 21/19,6 13,2	20 300 21/19 19,7		35 300 21/19 35,6		
	710	12,5	289 2l/13,5	630 21/13	1 330 21/12,5	1 830 21/12,5	2,46 2,800 2l/12,7	3 660 21/12,7 2,55	5 600 21/13 3,74	7 300 21/13 4,88	11 100 21/12,5 8,3	14 600 21/12,5	22 300 21/12,7	28 900 2l/12,7 20,2	40 900 21/12,9		64 500 21/12,5
45	1 800	40	_	520 21/40,4	1,01 1,350 31/38,4	1,38 1 850 31/38,4	2 850 31/41,6	2,55 3 720 31/41,6	5 700 31/43,6	7 400 31/43,6	11 200 3 I/38,4	14 800 31/38,4	22 600 3l/41,5 15,7	20,2 29 400 3l/41,5 21,1	41 500 31/42,3 24,5		
	1 120	25	=	=	_	=	_	-	_	=	=	_	23 200 3l/26,2	31 100 31/26,2	40 400 3l/29,3		80 500 3l/29,5

For n_1 higher than 1 400 rpm or lower than 560 rpm, see ch. 5 and the table on page 16. *In case of ambient temperature > 30 °C, consult us for thermal power verification. **Consult us for thermal power verification.

									Coor	roduos	r oizo					-	
						No	minal ou	utput po		reduce P№ hp	rsize						
n _{N2}	$\mid n_1 \mid$	i _N					minal ou in of ge		que i	M _№ Ibi ••• /i	n						
	om .		32	40	50	51	63	64	80	81	100	101	125	126	140	160	180
45	1 120	25	-	0,43 640 21/26,5	0,9 1 220 2l/24,1	1,19 1 610 21/24,1	1,84 2,590 21/25	2,25 3 170 21/25	3,55 5 200 21/26	4,34 6 300 21/26	7,6 10 300 21/24,1	9,3 12 600 21/24,1	13,5 18 400 21/24,3	_	_	_	-
	710	16	-	0,41 580 21/16,2	0,95 1 370 21/16,3	1,21 1,750 21/16,3	1,98 2,880 21/16,4	2,37 3 460 21/16,4	4,15 5 800 21/15,7	5 7 000 21/15,7	7,9 11 400 21/16,3	10,7 15 500 21/16,3	16,7 22 500 21/15,2	21,7 29 200 21/15,2	29,7 40 900 21/15,5	41,4 58 500 21/15,9	55 78 500 21/16
35,5	1 800	50	_	_	0,75 1 400 3l/53	1,06 1 960 31/53	1,65 2 920 31/50,4	2,22 3 920 31/50,4	3,35 5 800 31/49,8	4,5 7 900 31/49,8	6,2 11 500 31/53,1	8,5 15 700 31/53,1	13,1 23 100 31/50,2	17,6 30 900 31/50,2	23,6 42 000 31/50,8	35,6 62 000 31/49,7	45,5 84 100 31/52,7
	1 120	31,5	-	_	0,78 1 390 31/31,9	1,09 1,960 31/31,9	1,53 2 930 31/34,2	2,05 3 940 31/34,2	3,18 5 900 31/32,8	4,28 7 900 31/32,8	6,4 11 500 31/32	8,7 15,700 31/32	12,1 23 200 31/34,1	16,2 31 100 31/34,1	24 43 800 31/32,4	33,8 62 200 3l/32,7	46 87 700 31/33,9
	1 120	31,5	-	0,32 590 21/33,1	0,68 1 130 21/29,3	-	1,29 2 320 21/31,9	-	2,6 4 650 2l/31,8	-	5,8 9 600 2l/29,3	_	_	_	_	-	-
	710	20	-	0,37 660 21/19,9	0,79 1 370 21/19,6	1,08 1 880 21/19,6	1,62 2,880 21/20	2,12 3 760 21/20	3,12 5 800 21/20,8	4,07 7 500 21/20,8	6,5 11 400 21/19,6	21/19,6	12,3 20 800 21/19	15,1 25 500 21/19	21,5 36 200 21/19	21/19	21/19,5
28	1 800	63	=	-	0,63 1 400 31/63,6	0,86 1 910 31/63,6	1,36 2 920 31/61,3	1,77 3 810 3l/61,3	2,52 5 800 31/66,3	3,29 7 600 31/66,3	5,2 11 500 31/63,8	6,8 15 300 31/63,8	10,8 23 100 31/61,2	14 30 100 31/61,2	31/62,3	31/65,6	31/65,9
	1 120	40	-	0,23 530 21/40,4	0,65 1 390 31/38,4	0,88 1 900 31/38,4	1,25 2 930 31/41,6	1,64 3 830 31/41,6	2,39 5 900 31/43,6	3,13 7 700 31/43,6	5,3 11 500 3l/38,4	7,1 15 300 31/38,4	9,9 23 200 3l/41,5	12,9 30 200 31/41,5	17,9 42 700 31/42,3	31/43,1	31/43,3
	710	25	-	-	-	- 0.77	-	- 1.40	-	-	_	-	10,1 23 500 31/26,2	13,5 31 400 31/26,2	16 41 600 31/29,3	27,8 62 800 31/25,5	31,6 82 800 31/29,5
	710	25	_	0,28 660 21/26,5	0,59 1 250 21/24,1	0,77 1 640 21/24,1	1,2 2,660 21/25	1,46 3 250 21/25	2,3 5 300 21/26	2,81 6 500 21/26	4,94 10 600 21/24,1	6,1 13 000 21/24,1	8,7 18 800 21/24,3	_	_	_	_
22,4	1 800	80	-	_	0,46 1 270 31/78,2	0,61 1 660 31/78,2	1 2 680 31/76,7	1,22 3 280 31/76,7	1,86 5 400 31/82,7	2,27 6 600 31/82,7	3,9 10 700 31/78,3	4,79 13 100 31/78,3	7,9 21 200 31/76,5	9,8 26 200 31/76,5	31/76,5	22,1 60 900 31/78,5	31/78,9
	1 120	50	-	_	0,47 1 420 3l/53	0,66 1 980 31/53	1,05 2 970 31/50,4	1,4 3 980 31/50,4	2,11 5 900 31/49,8	2,84 8 000 31/49,8	3,91 11 700 3l/53,1	31/53,1	8,3 23 500 31/50,2	11,1 31,400 31/50,2	31/50,8	22,5 62 800 3l/49,7	31/52,7
	710	31,5	=	-	0,5 1 420 31/31,9	0,7 1 980 31/31,9	0,98 2 970 31/34,2	1,31 3 980 31/34,2	2,04 5 900 31/32,8	2,74 8 000 31/32,8	4,11 11 700 31/32	5,6 15 900 31/32	7,8 23 500 3l/34,1	10,4 31 400 31/34,1	15,4 44 300 31/32,4	21,7 62 800 31/32,7	29,4 88 500 31/33,9
	710	31,5	_	0,21 600 21/33,1	0,44 1 150 21/29,3	_	0,83 2 360 21/31,9	_	1,68 4 740 21/31,8	_	3,74 9 700 21/29,3	_	_	_	_	_	_
18	1 800	100	-	_	0,4 1 420 3l/102	0,54 1 930 31/102	0,88 2 970 31/96,4	1,15 3 870 31/96,4	1,63 5 900 31/104	2,12 7 700 3l/104	3,27 11 700 31/102	4,34 15 500 31/102	7 23 500 31/96,4	9 30 500 31/96,4	31/98,2	3 I /100	23,3 82 100 3l/101
	1 120	63	=	- 0.15	0,4 1 420 31/63,6	0,54 1 930 31/63,6	0,86 2 970 31/61,3	1,12 3 870 3I/61,3	1,59 5 900 31/66,3	2,08 7 700 31/66,3	3,26 11 700 31/63,8	4,32 15 500 31/63,8	6,8 23 500 31/61,2	8,9 30 500 3l/61,2	12,3 43 100 31/62,3	31/65,6	31/65,9
	710	40	_	0,15 540 21/40,4	0,42 1 420 31/38,4	0,57 1 930 31/38,4	0,8 2 970 31/41,6	1,05 3 870 3I/41,6	1,53 5 900 31/43,6	2 7 700 31/43,6	3,43 11 700 3l/38,4	4,54 15 500 31/38,4	6,4 23 500 31/41,5	8,3 30 500 31/41,5	31/42,3	16 61 100 31/43,1	31/43,3
14	1 800	125	=	=	0,29 1 280 3l/125	0,38 1 680 3l/125	0,64 2,720 3l/120	0,79 3 320 31/120	1,27 5 900 31/133	1,66 7 700 31/133	2,68 11,700 31/125	3,55 15 500 3V125	5,7 23 500 3l/117	7,4 30 500 3l/117	10,3 42 900 31/119	31/119	3I/123
	1 120	80	-	_	0,29 1 280 31/78,2	0,38 1 680 31/78,2	0,63 2,720 31/76,7	0,77 3 320 3l/76,7	1,17 5 400 3l/82,7	1,43 6 600 31/82,7	2,45 10 800 31/78,3	3,01 13 300 31/78,3	31/76,5	6,2 26 600 31/76,5	8,7 37 600 31/76,5	31/78,5	31/78,9
	710	50	-	_	0,3 1 420 3l/53	0,42 1 980 31/53	0,66 2 970 31/50,4	0,89 3 980 3l/50,4	1,34 5 900 31/49,8	1,8 8 000 3l/49,8	2,48 11 700 3l/53,1	3,38 15 900 3l/53,1	5,3 23 500 3l/50,2	7 31 400 3l/50,2	9,6 43 100 3l/50,8	14,2 62 800 3l/49,7	18,4 86 300 3l/52,7
11,2	1 800	160	-	_	0,22 1 170 31/152	-	0,45 2 410 31/154	-	0,94 5 400 31/166	1,14 6 600 31/166	2,01 10 800 31/153	2,48 13 300 31/153	4,19 21 500 31/146	5,2 26 600 31/146	7,3 37 600 31/146	_	_

For n_1 higher than 1 400 rpm or lower than 560 rpm, see ch. 5 and the table on page 16.

6 - Nominal powers and torques (gear reducers)

																щэ	مصنت
									Gear	reduce	r size						
							minal o			P _№ hp							
_	n ₁	, i					minal o			$M_{\scriptscriptstyle \rm N2}$ lb	in						
n _{N2}		/N			1 1		ain of ge		ı	/i	ı	ı	ı	1	ı	ı	ı
r	om I		32	40	50	51	63	64	80	81	100	101	125	126	140	160	180
11,2	1 120	100	_	-	0,25 1 420 31/102	0,34 1 930 31/102	0,55 2 970 31/96,4	0,71 3 870 31/96,4	1,01 5 900 31/104	1,32 7 700 31/104	2,04 11,700 3 I/102	2,7 15 500 31/102	4,32 23 500 31/96,4	5,6 30 500 31/96,4	7,8 43 100 31/98,2	10,8 61 100 31/100	14,8 83 700 31/101
	710	63	-	_	0,25 1 420 31/63,6	0,34 1 930 31/63,6	0,54 2 970 31/61,3	0,71 3 870 31/61,3	1,01 5 900 31/66,3	1,32 7 700 31/66,3	2,06 11 700 3l/63,8	2,74 15 500 31/63,8	4,32 23 500 31/61,2	5,6 30 500 31/61,2	7,8 43 100 31/62,3	10,5 61 100 31/65,6	14,7 86 300 31/65,9
9	1 800	200	_	-	_	_	_	_	0,68 4 820 31/203	_	1,52 9 900 31/186	_	2,95 19 300 31/187	_	_	_	-
	1 120	125	-	_	0,18 1 280 31/125	0,24 1 680 31/125	0,4 2 720 31/120	0,49 3 320 31/120	0,79 5 900 31/133	1,03 7 700 31/133	1,66 11 700 31/125	2,21 15 500 31/125	3,56 23 500 31/117	4,63 30 500 31/117	6,4 43 100 3l/119	7,9 53 100 31/119	10,9 75 200 31/123
	710	80	-	-	0,18 1 280 31/78,2	0,24 1 680 31/78,2	0,4 2,720 31/76,7	0,49 3 320 31/76,7	0,74 5 400 3l/82,7	0,9 6 600 3l/82,7	1,55 10,800 31/78,3	1,91 13 300 31/78,3	3,17 21 500 31/76,5	3,91 26 600 31/76,5	5,5 37 600 31/76,5	8,8 61 100 31/78,5	12,3 86 300 31/78,9
7,1	1 120	160	_	-	0,14 1 170 31/152	_	0,28 2 410 31/154	-	0,58 5 400 31/166	0,71 6 600 3l/166	1,25 10 800 31/153	1,54 13 300 31/153	2,61 21 500 31/146	3,22 26 600 31/146	4,56 37 600 31/146	_	-
	710	100	_	_	0,16 1 420 31/102	0,21 1 930 31/102	0,35 2 970 31/96,4	0,45 3 870 31/96,4	0,64 5 900 3l/104	0,84 7 700 3l/104	1,29 11,700 3 I/102	1,71 15 500 3l/102	2,74 23 500 31/96,4	3,57 30 500 31/96,4	4,94 43 100 31/98,2	6,9 61 100 3l/100	9,5 85 200 3l/101
5,6	1 120	200	_	=	_	_	-	=	0,42 4 820 31/203	-	0,95 9 900 31/186	_	1,83 19 300 31/187	_	_	-	-
	710	125	-	-	0,12 1 280 31/125	0,15 1 680 3l/125	0,25 2 720 31/120	0,31 3 320 31/120	0,5 5 900 31/133	0,66 7 700 31/133	1,06 11 700 31/125	1,4 15 500 31/125	2,26 23 500 31/117	2,94 30 500 31/117	4,07 43 100 3I/119	5 53 100 31/119	6,9 75 200 31/123

For n_1 higher than 1 400 rpm or lower than 560 rpm, see ch. 5 and the table on page 16.

6 - Nominal powers and torques (gear reducers)

Summary of transmission ratios *i*, torques $M_{\rm N2}$ [10³ lb in] valid for input speed $n_{\rm 1} \leq$ 90 rpm

Train of gears								Gear	r reduce	r size						
		32	40	50	51	63	64	80	81	100	101	125	126	140	160	180
	i _N	<i>i M</i> _№ 10 ³ lb in	<i>i M</i> _№ 10 ³ lb in	<i>i M</i> _{№2} 10 ³ lb in	<i>i M</i> _{№2} 10 ³ lb in	<i>i M</i> _{№2} 10 ³ lb in	<i>i M</i> _{N2} 10 ³ lb in	<i>i M</i> _{№2} 10³ lb in	<i>i M</i> _№ 10 ³ lb in	<i>i M</i> _{№2} 10 ³ lb in	<i>i M</i> _{№2} 10 ³ lb in	<i>i M</i> _{№2} 10 ³ lb in	<i>i M</i> _{№2} 10 ³ lb in	<i>i M</i> _№ 10 ³ lb in	<i>i M</i> _№ 10³ lb in	<i>i M</i> _{№2} 10 ³ lb in
	6,3 8 10	6,33 0,33 8,12 0,33 10,8 0,33	6,08 0,53 7,61 0,66 9,76 0,66	6,52 1,11 8,13 1,42 10,4 1,42	6,52 1,42 8,13 1,98 10,4 1,98	8,05 2,97	6,36 2,66 8,05 3,32 10,5 3,98	7,64 5,9	6,1 5,3 7,64 6,6 9,79 8	6,5 9,4 8,11 11,7 10,4 11,7	6,5 11,1 8,11 15 10,4 15,9	6,35 17,7 8,03 23,5 10,4 23,5	6,35 20,9 8,03 26,6 10,4 30,5	- - 9,92 35,4	6,34 45,9 8,12 60 10,7 61	8,43 67 10,8 80
21	12,5 16 20	13,5 0,31 – – –	13 0,66 16,2 0,61 19,9 0,66	12,5 1,42 16,3 1,42 19,6 1,42	12,5 1,93 16,3 1,9 19,6 1,93	16,4 2,97	12,7 3,87 16,4 3,76 20 3,87	13 5,9 15,7 5,9 20,8 5,9	13 7,7 15,7 7,6 20,8 7,7	12,5 11,7 16,3 11,7 19,6 11,7	12,5 15,5 16,3 15,9 19,6 15,5		12,7 30,5 15,2 30,5 19 26,6	12,9 40,9 15,5 40,9 19 37,6	12,1 60 15,9 61 19 53	12,5 67 16 80 19,5 75
	25 31,5 40	- -	26,5 0,66 33,1 0,61 40,4 0,54	24,1 1,28 29,3 1,17	24,1 1,68 - -	25 2,72 31,9 2,41	25 3,32 - -	26 5,4 31,8 4,82	26 6,6	24,1 10,8 29,3 9,9	24,1 13,3 - -	24,3 19,3 - -	- - -	- - -	- - -	- - -
	25 31,5 40	1 1 1	1 1 1	- 31,9 1,42 38,4 1,42	- 31,9 1,98 38,4 1,93		- 34,2 3,98 41,6 3,87	32,8 5,9 43,6 5,9	32,8 8 43,6 7,7	- 32 11,7 38,4 11,7	- 32 15,9 38,4 15,5	26,2 23,5 34,1 23,5 41,5 23,5	26,2 31,4 34,1 31,4 41,5 30,5	29,3 44,1 32,4 44,3 42,3 43,1	25,5 63 32,7 63 43,1 61	29,5 86 33,9 89 43,3 86
31	50 63 80	- - -	- - -	53 1,42 63,6 1,42 78,2 1,28	53 1,98 63,6 1,93 78,2 1,68	61,3 2,97	50,4 3,98 61,3 3,87 76,7 3,32	66,3 5,9	49,8 8 66,3 7,7 82,7 6,6	53,1 11,7 63,8 11,7 78,3 10,8	53,1 15,9 63,8 15,5 78,3 13,3		50,2 31,4 61,2 30,5 76,5 26,6	50,8 43,1 62,3 43,1 76,5 37,6	49,7 63 65,6 61 78,5 61	52,7 86 65,9 86 78,9 86
	100 125 160	-	- -	102 1,42 125 1,28 152 1,17	102 1,93 125 1,68		96,4 3,87 120 3,32	133 5,9	133 7,7	102 11,7 125 11,7 153 10,8	125 15,5		117 30,5	119 43,1	100 61 119 53	101 86 123 75
	200	-	-	_	_	_	-	203 4,82	_	186 9,9	_	187 19,3	_	_	_	-

7 - Designs, dimensions, mounting positions and lubricant quantities

Standard design Mounting position B3, B6, B7, B8, V5, V6

R 2I 32, 40

Standard design Mounting position B5, V1, V3 FC1A

Size	A	В	С	С	D Ø	Е	d Ø	е	Y ₁	F Ø	H h11	K Ø	L	M Ø	N Ø h6	P Ø	Q	s	Т	U	V	Z	Mass lb
32 40	4,53 5,2	2,09 2,48	0,79 0,75	10	0,63 0,748	1,18 1,57		0,79 0,91	6,02 7,28	0,37 0,37	2,95 3,54	0,37 0,37	0,39 0,47	4,53 5,12	3,74 4,331	5,51 6,3	0,12 0,14	0,39 0,39	5,47 6,14	3,03 3,62	1,89 ²⁾ 2,2	2,87 3,43	8,8 15,4

¹⁾ Dimensions of shaft end shoulder and flange surface respectively. 2) Square input flange \square 4,13 in: consult us if need be.

Mounting positions and grease quantities [gal]

	В3	В6	В7	В8	V5	V6	Size	B3, B6 B7, B8	V5, V6
PC1A ugi							32 40	0,31 0,57	0,55 1,04
Design	B5				V1	V3		B5	V1, V3
FC1A							32 40	0,22 0,42	0,4 0,77
		U	T.C 216						

Unless otherwise stated, gear reducers are supplied in mounting positions **B3** or **B5** which, being standard, are **omitted** from the designation.

7 - Designs, dimensions, mounting positions and lubricant quantities

UC2A

Standard design

Mounting position B3, B6, B7, B8, V5, V6

Size	Α	В	С	С	D	Е	d	Y ₁	d	Y ₁	d	Y ₁	d	Y,	G,	Н	K	L	М	N	Р	R	Т	U	W ₁	Mass
					Ø		Ø		Ø		Ø		Ø			h11	Ø		Ø	Ø	Ø					
								R	2			R	131							h6						
		B,					е		е		е		е			H₀			F	P,	Q ₊₂ 0					
							$I_{N} \leq$	12,5	<i>I</i> _N ≥	16	I _N :	≤ 8	I _N ≥	100		h11		L,	Ø	Ø		S		U,		lb
50 51	4,88	2,99 2,05	1,2	5,43	0,945 1,102		0,551 1,181	9,21 8,9	0,551 1,181	9,21 8,9	0,433 0,906		0,433 0,906	8,94 8,62	0,63	4,17 2,8	0,45	0,67 0,47	5,12 0,37	4,33° 5,51	6,3 0,14	0,53 0,39	5,83	4,33 3,94	6,97	26,5
63 64	6,02	3,78 2,6	1,44	6,61	1,26 1,496	2,28	0,748 1,575		0,63 1,181	10,83	0,551 1,181	10,83	0,551 1,181	10,83	0,75	5,2 3,35	0,55	0,79 0,55	6,5 0,45	5,12 6,3	7,87 0,14	0,63 0,47	7,17	5,35 4,88	8,54	44,1
80 81	7,56	4,84 3,43	1,69	8,19	1,496 1,89	3,15	0,945 1,969		0,748 1,575	13,78	0,748 1,575	13,78	0,63 1,181	13,39	0,87	6,3 4,17	0,63	0,94 0,67	8,46 0,55	7,09 7,87	9,84 0,16	0,75 0,55	8,9	6,73 6,18	10,47	77,2
100 101	9,45	6,3 4,69	2,03	9,96	1,89 2,165	3,23	1,102 2,362		0,945 1,969	16,22	0,945 1,969	16,22	0,748 1,575	15,83	1,06	7,68 5,2	0,71	1,12 0,79	10,43 0,55	9,06 9,84		0,89 0,63	11,02	8,43 7,8	12,87	137
125 126	11,69	7,87 5,94	2,32	12,244)	2,362 2,756		1,26 3,15	20,71	1,26 3,15	20,71	1,102 2,362	19,76	0,945 1,969	19,37	1,18	9,29 6,3	0,87	1,38 0,98	11,81 0,71	9,84 11,81	13,78 0,2	1,04 0,75	13,58	10,39 9,65	15,59	243
140	11,69	8,58 6,65	2,32	12,954)	3,15	5,12	1,26 3,15	22,4	1,26 3,15	22,4	1,102 2,362	21,46	0,945 1,969	21,06	1,18	9,84 ¹⁾ 6,3 ¹⁾	0,87	1,38 0,98	11,81 0,71	9,84 11,81	13,78 0,2	1,04 0,75	13,58	11,1 10,35	16,14	271
160	14,69	9,84 7,52	2,7	15,164)	3,543	5,12	1,654 4,331	25,94	1,654 4,331	25,94	1,26 3,15	24,53	1,26 3,15	24,53	1,34	11,61 ²⁾ 7,87 ²⁾	1,06	1,65 1,18	15,75 0,87	13,78 15,75		1,24 0,87	16,93	12,83 11,97	19,49	430
180	14,69	10,83 8,5	2,7	16,144)	3,937	6,5	1,654 4,331	28,31	1,654 4,331	28,31	1,26 3,15	26,89	1,26 3,15	26,89	1,34	12,4 ³⁾ 7,87 ³⁾	1,06	1,65 1,18	15,75 0,87	13,78 15,75		1,24 0,87	16,93	13,82 12,95	20,28	573

- 1) For high speed shaft **H** dimension is -0,59 in , **H**₀ +0,59 in .

 2) For high speed shaft **H** dimension is -0,32 in , **H**₀ +0,32 in .

 3) For high speed shaft **H** dimension is -1,14 in , **H**₀ +1,14 in .

 4) For R 3I **c** dimension is -0,16 in (sizes 125 ... 140), 0,24 in (sizes 160 and 180).

Mounting positions and oil quantities [gal]

						Size	В3	B6, B7	B8, V6	V5
В3	B 6	В7	B8	V5	V6					
						50, 51 63, 64 80, 81 100, 101 125, 126 140	0,21 0,42 0,82 1,5 2,7 3,1	0,29 0,58 1,1 1,9 3,4 3,9	0,29 0,58 1,1 2,1 3,9 4,4	0,37 0,74 1,5 2,6 4,8 5,5
	UT.	.C 628				160 180	5,2 6,1	6,6 7,7	7,4 8,5	9,2 11

Unless otherwise stated, gear reducers are supplied in mounting positions **B3** which, being standard, is **omitted** from the designation.

P ₁	\mathbf{n}_2	M_2	fs	Gear reducer - Motor	į	P ₁	n ₂	M_2	<i>f</i> s	Gear reducer - Motor	i
hp	rpm	lb in	,0	Godi roddoor motor	,	hp	rpm	lb in	.0		,
1.10	19	10 111				""	.,,,,,,				
1)				2)		1)				2)	
\vdash		205	4.00		400	ł 		000	0.10	,	
0,12	8,44	865	1,32	MR 3I 50 - 63 A 6	130	0,16	24,6 23,8	396 409	2,12 3,55	MR 3I 41 - 63 B 6 MR 3I 50 - 63 A 4	44,7 71,4
	10,3 10,3	712 712	1,8	MR 3I 50 - 63 A 6 MR 3I 51 - 63 A 6	107 107		25,8	378	1,8	MR 3I 40 - 63 A 4	65,9
	11,9	616	2,36	MR 3I 40 - 63 A 6	92,8				,		00,9
	12,6	580	2.5	MR 3I 50 - 63 A 6	87,3		27,8	351	2,36	MR 3I 41 - 63 B 6	39,6
	12,6	580	3,35	MR 3I 51 - 63 A 6	87,3		25,8	378	2,24	MR 3I 41 - 63 A 4	65,9
	14,8	494	1,32	MR 3I 40 - 63 A 6	74,4		26,2 28,6	372 341	3,75 4,25	MR 3I 50 - 63 A 4 MR 3I 50 - 63 A 4	65 59,5
	14,8	494	1,7	MR 3I 41 - 63 A 6	74,4		30,8	316	1,06	MR 3I 32 - 63 B 6	35,7
	15,4 16,7	474 438	3 1,5	MR 3I 50 - 63 A 6 MR 3I 40 - 63 A 6	71,4 65,9		30,4	320	2,12	MR 3I 40 - 63 A 4	55,9
	16,7	438	1,9	MR 3I 41 - 63 A 6	65,9		30,4	320	2,65	MR 3I 41 - 63 A 4	55,9
	16,9	432	3,35	MR 3I 50 - 63 A 6	65		35,8	272	1,18	MR 3I 32 - 63 A 4	47,5
	19,7	371	1,8	MR 3I 40 - 63 A 6	55,9		33,1 33,1	294 294	2,24 2,65	MR 3I 40 - 63 A 4 MR 3I 41 - 63 A 4	51,3 51,3
	19,7	371	2,24	MR 3I 41 - 63 A 6	55,9		33,1	294	4,75	MR 3I 50 - 63 A 4	51,4
	18,5	395	3,55	MR 3I 50 - 63 A 6	59,5		40,4	241	1,32	MR 3I 32 - 63 A 4	42,1
	23,2 21,4	315 341	1,06 1,9	MR 3I 32 - 63 A 6 MR 3I 40 - 63 A 6	47,5 51,3		38	256	2,5	MR 3I 40 - 63 A 4	44,7
	21,4	341	2,36	MR 3I 41 - 63 A 6	51,3		38	256	3,15	MR 3I 41 - 63 A 4	44,7
	21,4	341	4,25	MR 3I 50 - 63 A 6	51,4		44,2 42,9	220 227	1,5	MR 3I 32 - 63 B 6 MR 3I 40 - 63 A 4	24,9 39,6
	24,6	297	2,24	MR 3I 40 - 63 A 6	44,7		42,9	227	2,8 3,55	MR 31 40 - 63 A 4	39,6
	24,6 25,6	297 286	2,8 5	MR 3I 41 - 63 A 6 MR 3I 50 - 63 A 6	44,7 43		47,6	205	1,6	MR 3I 32 - 63 A 4	35,7
		279			42,1		50,5	193	3,35	MR 3I 40 - 63 A 4	33,6
	26,1 27,8	263	1,18 2,5	MR 3I 32 - 63 A 6 MR 3I 40 - 63 A 6	39,6		49,8	200	2,65	MR 2I 40 - 63 B 6	22,1
	27,8	263	3,15	MR 3I 41 - 63 A 6	39,6		53 55,2	184 176	1,7 3,75	MR 3I 32 - 63 A 4 MR 3I 40 - 63 A 4	32,1 30,8
	30,8	237	1,4	MR 3I 32 - 63 A 6	35,7		60,6	161	3,75	MR 3I 32 - 63 A 4	28,1
	34,3	213	1,5	MR 3I 32 - 63 A 6	32,1		60,8	164	3,55	MR 2I 40 - 63 B 6	20,1 18,1
	32,7 35,7	223 204	3 3,15	MR 3I 40 - 63 A 6 MR 3I 40 - 63 A 6	33,6 30,8		68,3	142	2,24	MR 3I 32 - 63 A 4	24,9
	39,2	186	1,7	MR 3I 32 - 63 A 6	28,1		64,8	150	4	MR 3I 40 - 63 A 4	26,2
	39,2 44,2	165	2	MR 3I 32 - 63 A 6	24,9		67,8	147	4,25	MR 2I 40 - 63 B 6	16,2
	41,9	174	3,55	MR 3I 40 - 63 A 6	26,2		80,5 81,6	121 122	2,65 2,36	MR 3I 32 - 63 A 4 MR 2I 32 - 63 B 6	21,1 13,5
	49,8	150	3,55	MR 2I 40 - 63 A 6	22,1		76,9	129	4	MR 2I 40 - 63 A 4	22,1
	52,1	140	2,36	MR 3I 32 - 63 A 6	21,1		89,7	109	3	MR 3I 32 - 63 A 4	18,9
	58,1	126	2,65	MR 3I 32 - 63 A 6	18,9		102	98	3,15	MR 2I 32 - 63 B 6	10,8
	66,8	109	2,8	MR 3I 32 - 63 A 6	16,5		103	94	3,15	MR 3I 32 - 63 A 4	16,5
	81,6	91	3,15	MR 2I 32 - 63 A 6	13,5		115	86	3,55	MR 2I 32 - 63 B 6	9,57
	102	73	4,25	MR 2I 32 - 63 A 6	10,8		126	79	3,55	MR 2I 32 - 63 A 4	13,5
	115	65	4,75	MR 2I 32 - 63 A 6	9,57		157	63	4,75	MR 2I 32 - 63 A 4	10,8
0,16	8,44	1154	1	MR 3I 50 - 63 B 6	130		178	56	5,3	MR 2I 32 - 63 A 4	9,57
	10,3	949	1,32	MR 3I 50 - 63 B 6	107		209	47,5	6,3	MR 2I 32 - 63 A 4	8,12
	10,3	949	1,8	MR 3I 51 - 63 B 6	107		233	42,6	7,1	MR 2I 32 - 63 A 4	7,29
	12,6	773	1,8	MR 3I 50 - 63 B 6	87,3		268	37	8	MR 2I 32 - 63 A 4	6,33
	12,6	773	2,5	MR 3I 51 - 63 B 6	87,3		336	29,6	8,5	MR 2I 32 - 63 A 4	5,06
	13	746	1,6	MR 3I 50 - 63 A 4	130	0,25	7,74	1887	1,25	MR 3I 63 - 71 A 6	142
	14,8 14,8	658 658	1 1,25	MR 3I 40 - 63 B 6 MR 3I 41 - 63 B 6	74,4 74,4		9,88	1478	1,8	MR 3I 63 - 71 A 6	111
	15,9	614	2,12	MR 3I 50 - 63 A 4	107		9,88	1478	2,24	MR 3I 64 - 71 A 6	111
	15,9	614	2,8	MR 3I 51 - 63 A 4	107		12,4	1182	2,5	MR 3I 63 - 71 A 6	89
	16,7	583	1,12	MR 3I 40 - 63 B 6	65,9		12,4 14,2	1182 1031	3,35 1,25	MR 3I 64 - 71 A 6 MR 3I 50 - 71 A 6	89 77,7
	16,7 16,9	583 575	1,4 2,5	MR 3I 41 - 63 B 6 MR 3I 50 - 63 B 6	65,9 65		13	1120	1,25	MR 3I 50 - 71 A 6 MR 3I 50 - 63 B 4	130
	16,9	575	3,35	MR 3I 51 - 63 B 6	65		14,2	1031	1,6	MR 3I 51 - 71 A 6	77,7
	19,7	495	1,32	MR 3I 40 - 63 B 6	55,9		15,9	921	1,4	MR 3I 50 - 63 B 4	107
	18,3 19,7	532 495	1,12	MR 3I 40 - 63 A 4 MR 3I 41 - 63 B 6	92,8 55,9		15,9 14,8	921 990	1,8 3	MR 3I 51 - 63 B 4 MR 3I 63 - 71 A 6	107 74,5
	19,7	500	1,7 2,8	MR 31 41 - 63 B 6	87,3		17,4	840	3 1,7	MR 3I 50 - 71 A 6	63,2
	19,5	500	3,75	MR 3I 51 - 63 A 4	87,3		17,4	840	2,24	MR 3I 50 - 71 A 6	63,2
	22,9	426	1,6	MR 3I 40 - 63 A 4	74,4		17,9	814	3,55	MR 3I 63 - 71 A 6	61,3
	22,9 21,4	426 455	1,9 3,15	MR 3I 41 - 63 A 4 MR 3I 50 - 63 B 6	74,4 51,4		20,4	715	1,12	MR 3I 41 - 71 A 6	53,9
		455 396	1,7	MR 3I 40 - 63 B 6	44,7		19,5	750 750	1,9 2.65	MR 3I 50 - 63 B 4 MR 3I 51 - 63 B 4	87,3
	24,6	390	1,7	WIT 31 40 - 03 D 6	44,/	J	19,5	750	2,65	MIT 31 - 03 D 4	87,3

¹⁾ Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3.

22,9 689 1,32 MR 31 50 - 67 1 A 6 51.7 17,4 1166 1,7 17,2 1131 2,65 MR 31 50 - 71 A 4 6 51.7 17,9 1131 2,65 MR 31 50 - 71 A 6 6 51.7 17,9 1131 2,65 MR 31 50 - 71 A 6 6 51.7 17,9 1131 2,65 MR 31 50 - 63 B 4 71,4 19,5 1042 1,32 MR 31 50 - 63 B 4 71,4 19,5 1042 1,32 MR 31 50 - 63 B 4 71,4 19,5 1042 1,32 MR 31 50 - 63 B 4 65,9 19,1 1062 2,8 MR 31 50 - 63 B 4 65,9 19,1 1062 2,8 MR 31 50 - 63 B 4 65,9 19,1 1062 2,8 MR 31 50 - 63 B 4 65,9 19,1 1062 2,8 MR 31 50 - 63 B 4 65,9 19,1 1062 2,8 MR 31 50 - 63 B 4 65,9 19,1 1062 2,8 MR 31 50 - 63 B 4 65,9 19,1 1062 2,8 MR 31 50 - 71 A 4 8 8 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0										
Dec	i	Gear reducer - Motor	M_2 fs	n ₂	j P ₁	Gear reducer - Motor	fs	M_2	n ₂	P ₁
0.25				_				_		
0.25										
22,9 687 2.8 MR 31 50 - 63 B 4 74.4 MR 31 61 - 63 B 4 74.4 MR 31 62 - 71 A 4 6 6 1.7 MR 31 61 - 71 B 6 6 6 1.7 MR 31 61 - 71 A 6 6 1.7 MR 31 61 - 71 B 6 6 1.7 MR 31 61 - 71 B 6 6 1.7 MR 31 61 - 71 B 6 6 1.7 MR 31 61 - 71 B 6 1.7		2)			1)	2)				1)
21,3	63,2									0,25
21,3	94,4		I '	1 - 1						
23,8 613 3,15 MR 31 51 - 63 B 4 71,4 19,5 1042 2,8 MR 31 51 - 63 C 4 52,8 666 1,18 MR 31 41 - 63 B 4 65,9 19,1 1062 3,5 MR 31 64 - 71 A 4 5 26,2 65,6 58 2,5 MR 31 41 - 63 B 4 65,9 21,9 39,7 1,1 1062 3,5 MR 31 64 - 71 A 4 5 26,6 61 1 2,8 MR 31 50 - 63 B 4 65,5 21,3 35,4 2 1 MR 31 51 - 71 B 4 5 30,4 481 1,7 MR 31 40 - 63 B 4 55,9 22,8 890 3,3 5 MR 31 51 - 63 C 4 5 33,1 441 1,8 MR 31 40 - 63 B 4 51,3 33,1 441 1,8 MR 31 41 - 63 B 4 51,3 33,1 442 3,1 5 MR 31 50 - 63 B 4 51,3 33,1 442 3,1 5 MR 31 50 - 63 B 4 51,3 33,1 442 3,1 5 MR 31 50 - 63 B 4 51,3 33,1 442 3,1 5 MR 31 50 - 63 B 4 44,7 22,6 MR 31 50 - 63 B 4 44,7 22,6 MR 31 50 - 63 B 4 44,7 22,6 MR 31 50 - 63 B 4 45,7 MR 31 50 - 63 B 4 45,7 MR 31 50 - 63 B 4 45,7 MR 31 50 - 63 B 4 44,7 22,9 776 1,8 MR 31 50 - 63 B 4 44,7 22,9 776 1,8 MR 31 50 - 63 B 4 43,4 33,7 MR 31 50 - 63 B 4 33,6 MR 31 51 - 63 C 4 5 4,8 MR 31 50 - 63 B 4 44,7 22,9 3,4 MR 31 51 - 63 C 4 5 4,8 MR 31 50 - 63 B 4 44,7 22,9 776 1,8 MR 31 50 - 63 B 4 43,7 MR 31 50 - 63 B 4 43,7 MR 31 50 - 63 B 4 44,7 22,9 776 1,8 MR 31 50 - 63 B 4 44,7 22,9 776 1,8 MR 31 50 - 63 B 4 43,9 6 22,9 776 1,8 MR 31 50 - 63 B 4 33,6 MR 31 51 - 63 C 4 5 4,5 MR 31 50 - 63 B 4 33,6 MR 31 50 -	61,3		I '		l .' l l					
25.8	87,3									
25.8	87,3 89		l '	1	'					
26,2 558 2.5 MR 31 50 - 63 B 4 55. 21,9 927 1,4 MR 31 50 - 71 A 4 2 26,2 558 3.55 MR 31 51 - 63 B 4 55.9 21,9 927 1,8 MR 31 51 - 71 B 6 5 30,4 481 1,4 MR 31 40 - 63 B 4 55.9 22,8 890 3.35 MR 31 51 - 63 C 4 5 3 3,31 441 1,5 MR 31 41 - 63 B 4 55.9 23,8 852 1,7 MR 31 50 - 63 C 4 5 3 33,1 441 1,8 MR 31 41 - 63 B 4 51,3 23,8 854 3,35 MR 31 50 - 63 C 4 5 3 33,1 442 3,15 MR 31 50 - 63 B 4 51,4 25,8 786 1,06 MR 31 50 - 63 C 4 5 4 5 4 5 5 4 5 4 5 5 6 5 6 5 6 5 6 5	89			1						
26,2 558 3,55 MR 3 51 - 63 B 4 65 21,9 927 1.8 MR 3 51 - 71 A 4 4 30,4 481 1,4 MR 3 40 - 63 B 4 55,9 22,8 890 3,35 MR 3 50 - 71 A 4 4 30,4 481 1,7 MR 3 41 - 63 B 4 55,9 23,8 852 1,7 MR 3 50 - 63 C 4 7 33,1 441 1,5 MR 3 44 - 63 B 4 51,3 23,8 852 2,24 MR 3 51 - 63 C 4 7 33,1 442 3,15 MR 3 50 - 63 B 4 51,3 23,8 85,8 786 1,06 MR 3 41 - 63 C 4 4 4 7 28,6 70,9 2 4 4 7 2 4 4 7 2 4 4 7 2 4 4 4 7 2 4 4 4 7 2 4 4 4 7 2 4 4 4 7 2 4 4 4 7 2 4 4 4 7 2 4 4 4 7 2 4 4 4 7 2 4 4 4 7 2 4 4 4 7 2 4 4 4 7 2 4 4 4 7 4 4 4 4 7 4 4	77,7						2,5		26,2	
30,4 481 1,4 MR 31 40 - 63 B 4 55,9 22,8 890 3,35 MR 31 63 - 71 A 4 55,9 33,1 441 1,5 MR 31 40 - 63 B 4 55,9 23,8 852 2,24 MR 31 51 - 63 C 4 6 33,1 441 1,5 MR 31 40 - 63 B 4 51,3 23,8 852 2,24 MR 31 51 - 63 C 4 6 7 33,1 442 3,15 MR 31 50 - 63 B 4 51,3 23,8 854 3,35 MR 31 63 - 71 B 6 6 3 C 4 6 7 33,1 442 3,15 MR 31 50 - 63 B 4 51,4 25,8 786 1,06 MR 31 41 - 63 C 4 6 7 38,3	51,7 77,7									
30,4 481 1,7 MR 31 41 - 63 B 4 55,9 23,8 852 1,7 MR 31 50 - 63 C 4 7 33,1 441 1,8 MR 31 41 - 63 B 4 51,3 33,1 441 1,8 MR 31 41 - 63 B 4 51,3 33,1 442 3,15 MR 31 50 - 63 B 4 51,3 33,1 442 3,15 MR 31 50 - 63 B 4 51,3 33,1 442 3,15 MR 31 50 - 63 B 4 51,3 33,1 442 3,15 MR 31 40 - 63 B 4 44,7 28,6 709 2 2 MR 31 50 - 63 C 4 6 8 38,5 39,5 370 3,75 MR 31 40 - 63 B 4 44,7 28,6 709 2 2 MR 31 50 - 63 C 4 6 8 4 44,7 28,6 709 2 2 MR 31 50 - 63 C 4 6 8 4 44,7 28,6 709 2 2 MR 31 50 - 63 C 4 6 8 4 44,7 39,5 39,5 370 3,75 MR 31 50 - 63 B 4 43,7 28,9 3,6 28,6 709 2 8 MR 31 51 - 63 C 4 6 8 4 44,7 39,6 39,6 39,6 39,6 39,6 39,6 39,6 39,6	74,5				l I I				1 1	
33,1	71,4									
33,1 442 3,15 MR 3i 50 - 63 B 4 51,4 25,8 786 1,06 MR 3i 41 - 63 C 4 63 B 4 44,7 26,5 776 1,8 MR 3i 50 - 63 C 4 63 B 44,7 26,5 776 1,9 MR 3i 50 - 63 C 4 63 B 44,7 26,5 776 2,5 MR 3i 50 - 63 C 4 63 B 44,7 26,5 776 2,5 MR 3i 50 - 63 C 4 63 B 44,7 26,5 776 2,5 MR 3i 50 - 63 C 4 63 B 44,7 26,5 776 2,5 MR 3i 50 - 63 C 4 63 B 44,7 3 26,6 709 2 MR 3i 50 - 63 C 4 63 B 44,7 3 26,6 709 2 MR 3i 50 - 63 C 4 63 B 44,7 3 26,6 709 2,8 MR 3i 50 - 63 C 4 63 B 44,7 3 26,6 709 2,8 MR 3i 50 - 63 C 4 64,4 3 3,4 33,7 4 MR 3i 50 - 63 B 4 39,6 26,9 755 2,5 MR 3i 51 - 71 A 4 64,4 3 4 3,4 33,7 4 MR 3i 50 - 63 B 4 39,6 26,9 755 2,5 MR 3i 51 - 71 A 4 64,4 3 4 3,4 33,7 4 MR 3i 50 - 63 B 4 39,6 26,9 755 2,5 MR 3i 51 - 71 A 4 64,4 3 4 3,4 33,7 4 MR 3i 50 - 63 B 4 39,6 26,9 755 2,5 MR 3i 50 - 63 C 4 6,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 4,4 4,7 3,4 4,4 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4	71,4				51,3	MR 3I 40 - 63 B 4	1,5	441		
38 384 1,7 MR 31 40 - 63 B 4 44,7 28,6 709 2 39,5 370 3,75 MR 31 40 - 63 B 4 44,7 26,9 755 1,9 MR 31 50 - 63 C 4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6	46,3 65,9			'	l = .' .					
38	65	MR 3I 50 - 63 C 4								
39,5 370 3,75 MR 3I 50 - 63 B 4 43 9,6 26,9 776 2,5 MR 3I 51 - 63 C 4 6 4 6 4 4,2 4,2 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4	59,5	MR 3I 50 - 63 C 4	709 2	28,6	'					
42,9 340 1,9 MR 31 40 - 63 B 4 39,6 26,9 70,9 2,8 MR 31 51 - 63 C 4 5 6 6 6 7 1	63,2 65				43	MR 3I 50 - 63 B 4	3,75	370		
43,4 337 4 MR 3I 50 - 63 B 4 39,2 27,7 732 4 MR 3I 63 - 71 A 4 6 6 6 6 6 6 2,5 4 6 6 7 1,2 5 6 7 1 A 4 6 6 7 1,2 5 6 7 1 A 4 6	59,5	MR 3I 51 - 63 C 4	709 2,8	28,6						
47,6 307 1,06 MR 3I 32 - 63 B 4 35,7 50,5 289 2,24 MR 3I 40 - 63 B 4 33,6 50,5 289 2,8 MR 3I 41 - 63 B 4 33,6 47,5 308 4,5 MR 3I 40 - 63 B 4 35,8 31,5 643 1,25 MR 3I 41 - 63 C 4 5 5 5 5 2 265 2,5 MR 3I 40 - 63 B 4 30,8 30,8 30,7 661 4,5 MR 3I 41 - 63 B 4 30,8 30,7 661 4,5 MR 3I 50 - 71 A 4 5 5 5 5 2 265 2,5 MR 3I 41 - 63 B 4 30,8 30,7 661 4,5 MR 3I 41 - 63 B 4 30,8 30,7 661 4,5 MR 3I 41 - 63 B 4 30,8 30,7 661 4,5 MR 3I 40 - 63 C 4 5 6 6 6 6 241 1,32 MR 3I 32 - 63 B 4 28,1 33,1 612 1,06 MR 3I 40 - 63 C 4 5 6 6 6 6 241 1,32 MR 3I 32 - 63 B 4 28,1 33,1 612 1,06 MR 3I 40 - 63 C 4 5 6 6 6 6 6 225 2,6 MR 3I 40 - 63 B 4 26,2 33,1 612 1,06 MR 3I 41 - 63 C 4 5 6 6 6 6 6 225 2,6 MR 3I 40 - 63 B 4 26,2 33,1 612 1,32 MR 3I 41 - 63 C 4 5 6 6 6 6 6 225 2,6 MR 3I 40 - 63 B 4 26,2 33,1 612 1,32 MR 3I 41 - 63 C 4 5 6 6 6 6 6 8 225 2,6 MR 3I 40 - 63 B 4 26,2 33,1 612 3,3	63,2 61,3									
50,5 289 2,24 MR 3I 40 - 63 B 4 33,6 31,5 643 1 MR 3I 40 - 71 A 4 8 4 50,5 289 2,28 MR 3I 41 - 63 B 4 33,6 30,4 667 1,25 MR 3I 40 - 71 A 4 8 4 33,6 30,4 667 1,25 MR 3I 40 - 71 A 4 8 28,8 1,25 MR 3I 40 - 63 B 4 33,6 30,4 667 1,25 MR 3I 41 - 71 A 4 8 682 2 MR 3I 41 - 71 A 4 8 682 2 683 1 MR 3I 40 - 71 A 4 8 682 2 683 4 1 MR 3I 40 - 63 B 4 30,8 30,7 661 4,5 MR 3I 50 - 71 A 4 4 8 4 24,9 35,6 570 1,1 MR 3I 40 - 63 B 4 24,9 35,6 570 1,5	55,9			'			1,06		47,6	
47,5 308 4,5 MR 3I 50 - 63 B 4 35,8 31,5 643 1,25 MR 3I 41 - 71 A 4 5 5 53 275 1,12 MR 3I 32 - 63 B 4 30,8 55,2 265 2,5 MR 3I 40 - 63 B 4 30,8 30,7 661 4,5 MR 3I 51 - 71 A 4 5 5 55,2 265 3,15 MR 3I 41 - 63 B 4 30,8 30,7 661 4,5 MR 3I 51 - 71 A 4 5 5 66,6 241 1,32 MR 3I 32 - 63 B 4 28,1 33,1 612 1,06 MR 3I 40 - 63 C 4 5 64,8 225 2,65 MR 3I 41 - 63 B 4 26,2 35,6 570 1,18 MR 3I 41 - 63 C 4 5 64,8 225 3,15 MR 3I 41 - 63 B 4 26,2 35,6 570 1,5 MR 3I 41 - 71 A 4 2 6,6 67,9 220 2,36 MR 2I 40 - 71 A 6 16,2 32,4 MR 3I 50 - 71 A 4 2 6,2 33,1 613 2,26 MR 3I 50 - 71 A 4 2 6,2 34,4 67 3 MR 3I 51 - 71 A 4 2 6,5 MR 3I 51 - 71 A 4 2 6,5 MR 3I 51 - 63 C 4 5 6,5 MR 3I 51 - 71 A 4 2 6,5 MR 3I 51 - 71 A 4 2 6,5 MR 3I 51 - 71 A 4 2 6,5 MR 3I 51 - 71 A 4 2 6,5 MR 3I 51 - 71 A 4 2 6,5 MR 3I 50 - 63 C 4 5 6,5 MR 3I 51 - 63 C 4 5 6,5 MR 3I 51 - 63 C 4 5 6,5 MR 3I 51 - 63 C 4 5 6,5 MR 3I 51 - 71 A 4 2 6,5 MR 3I 51 - 71 A 4 4 2 6,5 MR 3I 51 - 71 A 4 4 2 6,5 MR 3I 51 - 71 A 4 4 2 6,5 MR 3I 51 - 71 A 4 4 2 6,5 MR 3I 51 - 71 A 4 4 2 6,5 MR 3I 51 - 71 A 4 4 2 6,5 MR 3I 51 - 71 A 4 4 2 6,5 MR 3I 51 - 71 A 4 4 2 6,5 MR 3I 51 - 71 A 4 4 2 6,5 MR 3I 51 - 71 A 4 4 2 6,5 MR 3I	53,9	MR 3I 40 - 71 A 4	643 1	31,5	33,6				50,5	
53 275 1,12 MR 3I 32 - 63 B 4 32,1 29,8 682 2.65 MR 3I 50 - 71 A 4 5 55,2 4 55,2 265 2,5 MR 3I 40 - 63 B 4 30,8 29,8 682 2.65 MR 3I 51 - 71 A 4 5 5 66,6 55,2 265 3,15 MR 3I 40 - 63 B 4 30,8 30,7 661 4,5 MR 3I 51 - 71 A 4 5 5 66,6 4 5 6,6 MR 3I 51 - 71 A 4 5 5 66,6 4 5 6,6 MR 3I 51 - 71 A 4 5 5 66,7 4 5 6,6 MR 3I 52 - 61 A 5 7 A 4 5 5 6,7 4 5 6,6 MR 3I 40 - 63 B 4 28,1 33,1 612 1,06 MR 3I 40 - 63 C 4 5 6,6 4 5 6,6 MR 3I 40 - 63 B 4 26,2 33,1 612 1,32 MR 3I 41 - 63 C 4 5 6,6 570 1,18 MR 3I 41 - 63 C 4 5 6,6 4 64,8 225 2,65 MR 3I 41 - 63 B 4 26,2 35,6 570 1,5 MR 3I 41 - 63 C 4 5 6,6 4 64,8 225 3,15 MR 3I 41 - 63 B 4 26,2 33,1 613 2,36 MR 3I 50 - 71 A 4 5 6,6 4 6,6 4 6,7 9 220 2,36 MR 2I 40 - 71 A 6 16,2 33,1 613 2,36 MR 3I 50 - 71 A 4 4 5 6,6 4 6,7 9 2,4 MR 3I 50 - 71 A 4 4 5 6,6 4 6,7 9 3,5 181 1,7 MR 3I 32 - 63 B 4 22,1 33,1 613 3,15 MR 3I 50 - 71 A 4 4 5 6,6 4 6,7 9 3,9 159 3,55 MR 2I 40 - 63 B 4 18,1 38,1 50 - 71 A 4 4 5 6,6 33,1 613 3,15 MR 3I 50 - 71 A 4 4 5 6,6	55,9 53,9									
55,2 265 2,5 MR 3I 40 - 63 B 4 30,8 30,8 30,7 661 4,5 MR 3I 51 - 71 A 4 5 5 661 4,5 4 5,6 60,6 241 1,32 MR 3I 32 - 63 B 4 28,1 30,8 30,7 661 4,5 MR 3I 63 - 71 A 4 5 5 661 4,5 4 5,6 68,3 214 1,5 MR 3I 40 - 63 B 4 24,9 35,6 570 1,18 MR 3I 40 - 71 A 4 4 26,2 33,1 612 1,32 MR 3I 41 - 63 C 4 5 64,8 225 2,65 MR 3I 40 - 63 B 4 26,2 33,1 612 1,32 MR 3I 41 - 61 C 4 5 64,8 4 26,2 33,1 613 2,36 MR 3I 41 - 61 C 4 5 64,8 4 26,2 33,1 613 2,36 MR 3I 41 - 61 C 4 5 64,8 4 26,2 33,1 613 2,36 MR 3I 50 - 63 C 4 5 6,6 67,9 1,5 MR 3I 41 - 61 C 4 5 6,7 MR 3I 50 - 71 A 4 4 5 6,7 4 26,2 33,1 613 2,36 MR 3I 50 - 71 A 4 4 2,7 4 26,2 33,1 613 2,36 MR 3I 50 - 71 A 4 4 2,7 4 26,2 33,1 613 3,31 613 3,31 613 3,31 613 3,31 613 3,31 613 3,31 617 3,15 MR 3I 50 - 71 A 4 4 2,4 4 2,4 4 2,4 4 3,4 4 3,4 4 3,4 <	57,1	MR 3I 50 - 71 A 4	682 2	29,8						
60,6	57,1				30,8	MR 3I 40 - 63 B 4	2,5	265	55,2	
68,3 214 1,5 MR 3I 32 - 63 B 4 24,9 64,8 225 2,65 MR 3I 40 - 63 B 4 26,2 67,9 220 2,36 MR 2I 40 - 71 A 6 16,2 32,9 617 2,24 MR 3I 50 - 71 A 4 2 8 80,5 181 1,7 MR 3I 32 - 63 B 4 22,1 33,1 613 2,36 MR 3I 50 - 71 A 4 2 8 80,5 181 1,7 MR 3I 32 - 63 B 4 22,1 33,1 613 3,15 MR 3I 50 - 71 A 4 2 8 8 8,7 163 1,9 MR 3I 32 - 63 B 4 18,9 82,7 180 3,15 MR 2I 40 - 63 B 4 18,1 93,9 159 3,55 MR 2I 40 - 63 B 4 18,1 103 141 2 MR 3I 32 - 63 B 4 16,2 105 142 4,25 MR 2I 40 - 63 B 4 16,2 105 142 4,25 MR 2I 40 - 63 B 4 16,2 117 127 4,75 MR 2I 40 - 63 B 4 14,5 117 127 4,75 MR 2I 40 - 63 B 4 14,5 117 127 4,75 MR 2I 40 - 63 B 4 14,5 117 127 4,75 MR 2I 40 - 63 B 4 14,5 117 127 4,75 MR 2I 40 - 63 B 4 12,8 117 127 4,75 MR 2I 40 - 63 B 4 12,8 117 127 4,75 MR 2I 40 - 63 B 4 14,5 117 127 4,75 MR 2I 40 - 63 B 4 14,5 117 127 4,75 MR 2I 40 - 63 B 4 14,5 117 127 4,75 MR 2I 32 - 63 B 4 10,8 117 128 44,25 MR 2I 32 - 63 B 4 14,5 117 127 4,75 MR 2I 32 - 63 B 4 10,8 117 128 44,25 MR 2I 32 - 63 B 4 10,8 117 128 44,25 MR 2I 32 - 63 B 4 10,8 117 128 44,25 MR 2I 32 - 63 B 4 10,8 117 128 44,25 MR 2I 32 - 63 B 4 10,8 117 128 44,25 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 41 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,4 11,5 MR 3I 40 - 63 C 4 34,	55,4 51,3			1 1	l ' l l					
64,8 225 2,65 MR 3I 40 - 63 B 4 26,2 67,9 220 2,36 MR 2I 40 - 71 A 6 16,2 80,5 181 1,7 MR 3I 32 - 63 B 4 21,1 76,9 194 2,65 MR 2I 40 - 71 A 6 13,3 81,5 10,5 12,5 14,2 14,25 MR 2I 40 - 63 B 4 16,5 117 127 4,75 MR 2I 32 - 63 B 4 12,8 157 95 3,15 MR 2I 40 - 63 B 4 14,5 178 84 3,55 MR 2I 32 - 63 B 4 12,8 157 95 3,15 MR 2I 32 - 63 B 4 12,8 157 95 3,15 MR 2I 32 - 63 B 4 12,8 157 95 3,15 MR 2I 32 - 63 B 4 14,5 178 84 3,55 MR 2I 32 - 63 B 4 10,8 157 178 84 3,55 MR 2I 32 - 63 B 4 10,8 157 178 84 3,55 MR 2I 32 - 63 B 4 10,8 157 178 84 3,55 MR 2I 32 - 63 B 4 10,8 157 178 84 3,55 MR 2I 32 - 63 B 4 10,8 157 178 MR 3I 41 - 71 A 4 4 4 10,8 157 178 84 3,55 MR 2I 32 - 63 B 4 10,8 157 178 MR 3I 41 - 71 A 4 4 10,8 157 178 MR 3I 41 - 71 A 4 4 10,8 157 178 MR 3I 41 - 71 A 4 10,8 150 - 71 A 10,8	47,7	MR 3I 40 - 71 A 4		35,6	'					
64,8 67,9 220 2,36 MR 3I 41 - 63 B 4 26,2 80,5 181 1,7 MR 3I 32 - 63 B 4 22,1 33,1 613 2,36 MR 3I 50 - 63 C 4 5 6 6,9 194 2,65 MR 2I 40 - 63 B 4 22,1 33,1 613 3,15 MR 3I 50 - 71 A 4 5 8 8,7 163 1,9 MR 3I 32 - 63 B 4 18,9 82,7 180 3,15 MR 2I 40 - 63 B 4 18,1 93,9 159 3,55 MR 2I 40 - 63 B 4 18,1 103 141 2 MR 3I 32 - 63 B 4 16,5 105 142 4,25 MR 2I 40 - 63 B 4 16,2 166 118 2,36 MR 2I 32 - 63 B 4 13,5 117 127 4,75 MR 2I 40 - 63 B 4 14,5 117 127 4,75 MR 2I 40 - 63 B 4 14,5 117 127 4,75 MR 2I 40 - 63 B 4 12,8 117 127 4,75 MR 2I 32 - 63 B 4 10,8 117 127 4,75 MR 2I 32 - 63 B 4 10,8 117 127 4,75 MR 2I 32 - 63 B 4 10,8 117 128 84 3,55 MR 2I 32 - 63 B 4 10,8 117 128 84 3,55 MR 2I 32 - 63 B 4 10,8 118 128 129 129 129 132 - 63 B 4 10,8 118 129 132 - 63 B 4 10,8 118 129 132 - 63 B 4 10,8 118 129 140 - 63 C 4 12,8 118 140 140 140 140 140 140 140 140 140 140	51,3									
80,5 181 1,7 MR 3I 32 - 63 B 4 21,1 32,1 613 3,15 MR 3I 50 - 71 A 4 2 8 8 8,7 163 1,9 MR 3I 32 - 63 B 4 18,9 82,7 180 3,15 MR 2I 40 - 71 A 6 13,3 32 - 63 B 4 18,1 103 141 2 MR 3I 32 - 63 B 4 16,5 105 142 4,25 MR 2I 40 - 63 B 4 16,5 117 127 4,75 MR 2I 40 - 63 B 4 14,5 117 127 4,75 MR 2I 40 - 63 B 4 14,5 117 127 4,75 MR 2I 40 - 63 B 4 12,8 157 95 3,15 MR 2I 32 - 63 B 4 10,8 157 95 3,15 MR 2I 32 - 63	47,7 51,4									
76,9	51,7	MR 3I 50 - 71 A 4	617 2,24	32,9						
89,7 163 1,9 MR 3i 32 - 63 B 4 18,9 82,7 180 3,15 MR 2i 40 - 71 A 6 13,3 93,9 159 3,55 MR 2i 40 - 63 B 4 18,1 103 141 2 MR 3i 32 - 63 B 4 16,5 105 142 4,25 MR 2i 40 - 63 B 4 16,5 126 118 2,36 MR 2i 32 - 63 B 4 13,5 117 127 4,75 MR 2i 40 - 63 B 4 14,5 133 112 5,3 MR 2i 40 - 63 B 4 14,5 157 95 3,15 MR 2i 32 - 63 B 4 10,8 157 95 3,15 MR 2i 32 - 63 B 4 10,8 178 84 3,55 MR 2i 32 - 63 B 4 10,8 209 71 4,25 MR 2i 32 - 63 B 4 10,8 209 71 4,25 MR 2i 32 - 63 B <t< th=""><th>47,1 51,4</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	47,1 51,4									
93,9 159 3,55 MR 2I 40 - 63 B 4 18,1 103 141 2 MR 3I 32 - 63 B 4 16,5 105 142 4,25 MR 2I 40 - 63 B 4 16,5 117 127 4,75 MR 2I 40 - 63 B 4 14,5 117 127 4,75 MR 2I 40 - 63 B 4 14,5 117 127 5,3 MR 2I 40 - 63 B 4 14,5 117 127 5,3 MR 2I 40 - 63 B 4 12,8 157 95 3,15 MR 2I 32 - 63 B 4 10,8 157 95 3,15 MR 2I 32 - 63 B 4 10,8 157 178 84 3,55 MR 2I 32 - 63 B 4 10,8 178 84 3,55 MR 2I 32 - 63 B 4 10,8 178 84 3,55 MR 2I 32 - 63 B 4 10,8 178 84 3,55 MR 2I 32 - 63 B 4 10,8 178 84 3,55 MR 2I 32 - 63 B 4 10,8 178 84 3,55 MR 2I 32 - 63 B 4 10,8 178 84 3,55 MR 2I 32 - 63 B 4 10,8 178 84 3,55 MR 2I 32 - 63 B 4 10,8 178 84 3,55 MR 2I 32 - 63 B 4 10,8 178 84 3,55 MR 2I 32 - 63 B 4 10,8 178 84 3,55 MR 2I 32 - 63 B 4 10,8 178 84 3,55 MR 2I 32 - 63 B 4 10,8 178 84 3,55 MR 2I 32 - 63 B 4 10,8 178 84 3,55 MR 2I 32 - 63 B 4 10,8 178 84 3,55 MR 2I 32 - 63 B 4 10,8 178 84 3,55 MR 3I 40 - 63 C 4 3,55 MR 3I 40 - 63	51,7	MR 3I 51 - 71 A 4	617 3,15	32,9	l I I	MR 3I 32 - 63 B 4		163		
103	47,1			1 1	13,3	MR 2I 40 - 71 A 6	3,15		82,7	
103	44,7 44,7						· ·			
126	43	MR 3I 50 - 63 C 4	513 2,65	39,5						
117	43,1 43,1				I I I					
133	39,6			1 1						
178 84 3,55 MR 2I 32 - 63 B 4 9,57 29 42 484 1,7 MR 3I 41 - 71 A 4 4 4 467 3 MR 3I 50 - 63 C 4 3 4 45,8 443 1,5 MR 3I 40 - 63 C 4 3 45,8 443 1,5 MR 3I 40 - 71 A 4 3 4 45,8 443 1,5 MR 3I 40 - 71 A 4 3 4 45,8 443 1,5 MR 3I 40 - 71 A 4 3 4 45,8 443 1,5 MR 3I 40 - 71 A 4 3 4 45,8 443 1,5 MR 3I 40 - 71 A 4 3 4 5 45,8 443 1,5 MR 3I 40 - 71 A 4 3 4 5 45,8 443 1,5 MR 3I 40 - 71 A 4 3 4 5 4 5 4 5 4 5 8 4 5 8 4 5 8 4 5 8 4 5 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	40,5	MR 3I 40 - 71 A 4	484 1,32	42	12,8		5,3	112		
209 71 4,25 MR 2l 32 - 63 B 4 8,12 33 64 4,75 MR 2l 32 - 63 B 4 7,29 43,4 467 3 MR 3l 50 - 63 C 4 3 4 45,8 443 1,5 MR 3l 40 - 63 C 4 3 45,8 443 1,5 MR 3l 40 - 71 A 4 3 4 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	39,6 40,5									
233 64 4,75 MR 2I 32 - 63 B 4 7,29 45,8 443 1,5 MR 3I 40 - 71 A 4 3	39,2				'					
	33,6	MR 3I 40 - 63 C 4		50,5						
I IZDB 56 53 MB ZI 3Z = 63 B	37,1 33,6								1	
1 3,50 1,50	37,1				'				1	
336 44,4 5,6 MH 21 32 - 63 B 4 5,06 47,5 427 3,15 MR 31 50 - 63 C 4 3	35,8	MR 3I 50 - 63 C 4			- 					<u></u>
1 3,55 3,55 3,55 MP 21 50 - 71 P 6 7	37,2 22,3									0,33
9,00 2002 1,0 Win 31 04 - 71 B 0 1111 55,2 368 1,8 MR 31 40 - 63 C 4 3	30,8		368 1,8	55,2					1	
12,4 1642 1,8 MR 31 63 - 71 B 6 89 52,5 387 1,6 MR 31 40 - 71 A 4 3	32,4	MR 3I 40 - 71 A 4	387 1,6	52,5						
12,4 1642 2,36 MR 3I 64 - 71 B 6 89	30,8								12,4	
14,2 1432 1,18 MR 3I 51 - 71 B 6 77,7 54,9 369 3,75 MR 3I 50 - 63 C 4 3	31	MR 3I 50 - 63 C 4	369 3,75	54,9			1,18			
10,0 12.0 1 1 01 00 00 0 1 107	31,2		'	'						
	28,1 28,7		I '							
14,8 1375 2,8 MR 3I 64 - 71 B 6 74,5 59,2 343 2,36 MR 3I 41 - 71 A 4 2	28,7	MR 3I 41 - 71 A 4	343 2,36	59,2	74,5	MR 3I 64 - 71 B 6	2,8	1375	14,8	
	28,4	MR 3I 50 - 71 A 4	339 4	59,9	111	MR 3I 64 - 71 A 4		1328	15,3	

¹⁾ Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3.

P ₁	n ₂	M_2	fs	Gear reducer - Motor	i	\mathbf{P}_1	n ₂	M ₂	fs	Gear reducer - Motor	i
hp	rpm	lb in				hp	rpm	lb in			
1)				2)		1)				2)	
0,33	68,3	297	1,06	MR 3I 32 - 63 C 4	24,9	0,5	18,7	1603	3,75	MR 3I 80 - 80 A 6	58,7
	64,8 69,8	313 291	1,9 2,24	MR 3I 40 - 63 C 4 MR 3I 40 - 71 A 4	26,2 24,4		21,7	1382	1	MR 3I 50 - 80 A 6	50,6
	64,8	313	2,24	MR 3I 41 - 63 C 4	26,2		21,9 21,7	1372 1382	0,95 1,4	MR 3I 50 - 71 B 4 MR 3I 51 - 80 A 6	77,7 50,6
	69,8	291	2,8	MR 3I 41 - 71 A 4	24,4		21,9	1372	1,25	MR 3I 51 - 71 B 4	77,7
	65,5 67,9	310 305	4,5 1,7	MR 3I 50 - 71 A 4 MR 2I 40 - 71 B 6	26 16,2		22,8	1317	2,24	MR 3I 63 - 71 B 4	74,5
	80,5	252	1,25	MR 3I 32 - 63 C 4	21,1		22,8 25,5	1317 1176	3 1,18	MR 3I 64 - 71 B 4 MR 3I 50 - 71 C 6	74,5 43,1
	76,2	266	2,36	MR 3I 40 - 71 A 4	22,3		25,5	1176	1,7	MR 3I 51 - 71 C 6	43,1
	76,2 75,8	266 268	3 5	MR 3I 41 - 71 A 4 MR 3I 50 - 71 A 4	22,3 22,4		24,9	1207	2,5	MR 3I 63 - 80 A 6	44,2
	76,9	269	1,9	MR 2I 40 - 63 C 4	22,1		23,8 26,9	1264 1117	2,8 1,25	MR 3I 64 - 71 C 6 MR 3I 50 - 71 B 4	46,3 63,2
	76,4	271	4	MR 2I 50 - 71 A 4	22,3		26,9	1117	1,7	MR 3I 51 - 71 B 4	63,2
	89,7 89,4	226 227	1,4 2,65	MR 3I 32 - 63 C 4 MR 3I 40 - 71 A 4	18,9 19		27,7	1083	2,8	MR 3I 63 - 71 B 4	61,3
	89,4	227	3,15	MR 3I 41 - 71 A 4	19		27,7 29,8	1083	3,55 1,32	MR 3I 64 - 71 B 4 MR 3I 50 - 71 B 4	61,3 57,1
	82,7 82,7	250 250	2,24 2,5	MR 2 40 - 71 B	13,3 13,3		31,9	941	2,12	MR 3I 51 - 80 A 6	34,5
	93,6	221	2,65	MR 2I 40 - 71 B 6	11,8		29,8	1009	1,8	MR 3I 51 - 71 B 4	57,1
	93,9	220	2,65	MR 2I 40 - 63 C 4	18,1		30,7	979 843	3	MR 3I 63 - 71 B 4 MR 3I 41 - 71 B 4	55,4 47,7
	93,6	221	3,15	MR 2I 41 - 71 B 6	11,8		35,6 32,9	914	1 1,5	MR 3I 41 - 71 B 4	47,7 51,7
	103 112	196 181	1,5 2,65	MR 3I 32 - 63 C 4 MR 3I 40 - 71 A 4	16,5 15,2		36,1	832	1,7	MR 3I 50 - 71 B 4	47,1
	105	198	3	MR 2I 40 - 63 C 4	16,2		32,9 36,1	914 832	2,12 2,36	MR 3I 51 - 71 B 4 MR 3I 51 - 71 B 4	51,7 47,1
	105 105	197 198	2,5 3,55	MR 2I 40 - 71 A 4 MR 2I 41 - 63 C 4	16,2 16,2		33,7	890	3,35	MR 3I 63 - 71 B 4	50,4
	126	164	1,7	MR 2I 32 - 63 C 4	13,5		38,3	784	1,06	MR 3I 41 - 71 C 6	28,7
	117	177	3,35	MR 2I 40 - 63 C 4	14,5		39,5 39,5	761 761	1,8 2,65	MR 3I 50 - 71 B 4 MR 3I 51 - 71 B 4	43,1 43,1
	128	162	3,35	MR 2I 40 - 71 A 4	13,3		36,7	818	3,35	MR 3I 63 - 71 B 4	46,3
	133 157	156	4	MR 2I 40 - 63 C 4 MR 2I 32 - 63 C 4	12,8 10,8		42	716	1,18	MR 3I 41 - 71 B 4	40,5
	156	132 133	2,24 4,5	MR 2I 32 - 63 C 4 MR 2I 40 - 63 C 4	10,8		42,4 42,4	708 708	2,8	MR 3I 50 - 71 C 6 MR 3I 51 - 71 C 6	26 26
	145	143	4	MR 2I 40 - 71 A 4	11,8		40,9	734	4	MR 3I 63 - 71 B 4	41,6
	178	117	2,5	MR 2I 32 - 63 C 4	9,57		45,2	664	4,25	MR 3I 63 - 71 B 4	37,6
	161 181	129 115	4,5 5,3	MR 2 40 - 71 A	10,6 9,41		45,8 49,3	655 609	1 1,4	MR 3I 40 - 71 B 4 MR 3I 41 - 71 C 6	37,1 22,3
	209	99	3	MR 2I 32 - 63 C 4	8,12		45,8	655	1,18	MR 3I 41 - 71 B 4	37,1
	213	97	6	MR 2I 40 - 71 A 4	7,98		45,7 45,7	658 658	2,12	MR 3I 50 - 71 B 4 MR 3I 51 - 71 B 4	37,2 37,2
	233 232	89 89	3,35 6,7	MR 2I 32 - 63 C 4 MR 2I 40 - 71 A 4	7,29 7,32		49,4	620	1,8	MR 2I 50 - 71 C 6	22,3
	268	77	3,75	MR 21 32 - 63 C 4	6,33		52,5	572	1,12	MR 3I 40 - 71 B 4	32,4
	336	62	4	MR 2I 32 - 63 C 4	5,06		52,5 54,5	572 550	1,4 2,5	MR 3I 41 - 71 B 4 MR 3I 50 - 71 B 4	32,4 31,2
0,5	7,13	4210	1,12	MR 3I 80 - 80 A 6	154		54,5 54,5	550	3,35	MR 3I 50 - 71 B 4 MR 3I 51 - 71 B 4	31,2
0,0	8,72	3443	1,12	MR 3I 80 - 80 A 6	126		59,2	507	1,25	MR 3I 40 - 71 B 4	28,7
	8,72	3443	1,9	MR 3I 81 - 80 A 6	126		59,2 59,9	507 501	1,6 2,65	MR 3I 41 - 71 B 4 MR 3I 50 - 71 B 4	28,7 28,4
	9,88	3037	1,12	MR 3I 64 - 71 C 6	111		59,9	501	3,75	MR 3I 51 - 71 B 4	28,4
	10,9	2759	2,12	MR 3I 80 - 80 A 6	101		69,8	430	1,5	MR 3I 40 - 71 B 4	24,4
	10,9 12,4	2759 2430	2,8 1,25	MR 3I 81 - 80 A 6 MR 3I 63 - 71 C 6	101 89		69,8 65,5	430 458	1,9 3	MR 3I 41 - 71 B 4 MR 3I 50 - 71 B 4	24,4 26
	12,4	2510	0,95	MR 3I 63 - 71 B 4	142		76,2	394	1,6	MR 3I 40 - 71 B 4	22,3
	12,4	2430	1,6	MR 3I 64 - 71 C 6	89		76,2	394	2	MR 3I 41 - 71 B 4	22,3
	13 13	2310 2310	2,5 3,35	MR 3I 80 - 80 A 6 MR 3I 81 - 80 A 6	84,6 84,6		75,8 76,4	396 401	3,35 2,8	MR 3I 50 - 71 B 4 MR 2I 50 - 71 B 4	22,4 22,3
	14,8	2035	1,5	MR 3I 63 - 71 C 6	74,5		89,4	336	1,8	MR 3I 40 - 71 B 4	19
	15,3	1965	1,4	MR 3I 63 - 71 B 4	111		89,4	336	2,12	MR 3I 41 - 71 B 4	19
	14,8 15,3	2035 1965	1,9 1,7	MR 3I 64 - 71 C 6 MR 3I 64 - 71 B 4	74,5		83,7 82,7	359 371	3,75 1,5	MR 3I 50 - 71 B 4 MR 2I 40 - 71 C 6	20,3 13,3
	17,4	1726	1,12	MR 3I 51 - 71 C 6	111 63,2		82,7	371	1,7	MR 2I 41 - 71 C 6	13,3
	17,9	1674	1,8	MR 3I 63 - 71 C 6	61,3		93,6	328	1,8	MR 2I 40 - 71 C 6	11,8
	17,9	1674	2,36	MR 3I 64 - 71 C 6	61,3		93,6	328 330	2,12	MR 2I 41 - 71 C 6 MR 2I 50 - 71 B 4	11,8
	16,6 19,7	1809 1527	3,35 1,18	MR 3I 80 - 80 A 6 MR 3I 51 - 80 A 6	66,3 55,9		92,9 112	268	3,55 1,8	MR 3I 40 - 71 B 4	18,3 15,2
	19,7	1572	1,9	MR 3I 63 - 71 B 4	89		104	294	2,12	MR 2I 40 - 71 C 6	10,6
	19,1	1572	2,5	MR 3I 64 - 71 B 4	89		105	292	1,7	MR 2I 40 - 71 B 4	16,2
						-					

¹⁾ Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3.

\mathbf{P}_1	n ₂	M_2	<i>f</i> s	Gear reducer - Motor	i	P ₁	n ₂	M_2	fs	Gear reducer - Motor	i
hp	rpm	lb in				hp	rpm	lb in			
1)				2)		1)				2)	
0,5	104 103	294 297	2,5 4,25	MR 2I 41 - 71 C 6 MR 2I 50 - 71 B 4	10,6 16,5	0,75		1455 1430	2,8 2,5	MR 3I 64 - 71 C 4 MR 3I 64 - 80 A 4	55,4
	114	269	4,25	MR 2I 50 - 71 B 4	14,9		31,2 28,9	1542	3,75	MR 3I 80 - 80 A 4	54,5 58,7
	126	243	1,18	MR 2I 32 - 71 B * 4	13,5		32,9	1358	1,06	MR 3I 50 - 71 C 4	51,7
	128 128	240 240	2,36 2,65	MR 2I 40 - 71 B 4 MR 2I 41 - 71 B 4	13,3 13,3		36,1 33,6	1236 1329	1,12 1,06	MR 3I 50 - 71 C 4 MR 3I 50 - 80 A 4	47,1 50,6
	123	249	5	MR 2I 50 - 71 B 4	13,8		32,9	1358	1,4	MR 3I 51 - 71 C 4	51,7
	136	225	5,6	MR 2I 50 - 71 B 4	12,5		36,1 33,6	1236 1329	1,6 1,4	MR 3I 51 - 71 C 4 MR 3I 51 - 80 A 4	47,1 50,6
	157	195	1,5	MR 2I 32 - 71 B * 4	10,8		33,7	1322	2,24	MR 3I 63 - 71 C 4	50,4
	145 145	212 212	2,8 3,35	MR 2 40 - 71 B	11,8 11,8		34,7 33,7	1284 1322	2,24 3	MR 3I 63 - 80 A 4 MR 3I 64 - 71 C 4	48,9 50,4
	178	172	1,7	MR 2I 32 - 71 B * 4	9,57		34,7	1284	3	MR 3I 64 - 80 A 4	48,9
	161 181	190 170	3,15 3,55	MR 2I 40 - 71 B 4 MR 2I 40 - 71 B 4	10,6 9,41		36,9	1209	1,18	MR 3I 50 - 80 B 6	29,8
	209	146	2	MR 2I 32 - 71 B * 4	8,12		39,5 37,2	1131 1201	1,25 1,12	MR 3I 50 - 71 C 4 MR 3I 50 - 80 A 4	43,1 45,7
	213	144	4,25	MR 2I 40 - 71 B 4	7,98		36,9	1209	1,6	MR 3I 51 - 80 B 6	29,8
	233	131	2,24	MR 2I 32 - 71 B * 4	7,29		39,5 37,2	1131 1201	1,7 1,5	MR 3I 51 - 71 C 4 MR 3I 51 - 80 A 4	43,1 45,7
	232 268	132 114	4,5 2,65	MR 2I 40 - 71 B 4 MR 2I 32 - 71 B * 4	7,32 6.33		36,7	1215	2,36	MR 3I 63 - 71 C 4	46,3
	268	112	5,3	MR 2I 40 - 71 B 4	6,22		38,4 36,7	1161 1215	2,5 3	MR 3I 63 - 80 A 4 MR 3I 64 - 71 C 4	44,2 46,3
	336	91	2,65	MR 2I 32 - 71 B * 4	5,06		38,4	1161	3,35	MR 3I 64 - 80 A 4	44,2
	342	90	5,6	MR 2I 40 - 71 B 4	4,97		41	1087	1,25	MR 3I 50 - 80 A 4	41,4
0,75	8,72	5119	1,06	MR 3I 80 - 80 B 6	126		45,1 41	990 1087	1,4 1,7	MR 3I 50 - 80 A 4 MR 3I 51 - 80 A 4	37,7 41,4
	8,72	5119	1,32	MR 3I 81 - 80 B 6	126		45,1	990	2	MR 3I 51 - 80 A 4	37,7
	10,9 11	4101 4049	1,4 1,18	MR 3I 80 - 80 B 6 MR 3I 80 - 80 A 4	101 154		40,9 45,2	1091 987	2,65 3	MR 3I 63 - 71 C 4 MR 3I 63 - 71 C 4	41,6 37,6
	10,9	4101	1,9	MR 3I 81 - 80 B 6	101		42,3	1055	2,8	MR 3I 63 - 80 A 4	40,2
	13	3434	1,7	MR 3I 80 - 80 B 6	84,6		40,9 42,3	1091 1055	3,55 3,75	MR 3I 64 - 71 C 4 MR 3I 64 - 80 A 4	41,6 40,2
	13,5 13	3312 3434	1,6 2,24	MR 3I 80 - 80 A 4 MR 3I 81 - 80 B 6	126 84,6		45,3	1005	2,36	MR 2I 63 - 80 B 6	24,3
	13,5	3312	2	MR 3I 81 - 80 A 4	126		45,7	977	1,4	MR 3I 50 - 71 C 4 MR 3I 50 - 80 A 4	37,2
	14,8 15,3	3016 2922	1,12 1,12	MR 3I 64 - 80 B 6 MR 3I 64 - 71 C 4	74,3 111		49,3 45,7	905 977	1,5 2	MR 3I 51 - 71 C 4	34,5 37,2
	17,9	2492	0,95	MR 3I 63 - 80 A 4	94.9		49,3	905	2,12	MR 3I 51 - 80 A 4 MR 3I 63 - 71 C 4	34,5
	16,8	2654	2,24	MR 3I 80 - 80 A 4	101		49,8 46	897 970	3,15 2,8	MR 3I 63 - 71 C 4 MR 3I 63 - 80 A 4	34,2 36,9
	16,8	2654 2413	3 1,25	MR 3I 81 - 80 A 4 MR 3I 63 - 80 B 6	101 59,5		51,3	871	3,35	MR 3I 63 - 80 A 4 MR 2I 50 - 80 B * 6	33,2
	18,5 19,1	2337	1,25	MR 3I 63 - 80 B 6 MR 3I 63 - 71 C 4	39,5 89		49,4 52,9	922 843	1,18 1,6	MR 2I 50 - 80 B * 6 MR 3I 50 - 80 B 6	22,3 20,8
	18,5	2413	1,6	MR 3I 64 - 80 B 6	59,5		54,5	818	1,7	MR 3I 50 - 71 C 4	31,2
	19,1 20,1	2337 2222	1,7 2,65	MR 3I 64 - 71 C	89 84,6		57 52,9	783 843	1,8 2,24	MR 3I 50 - 80 A 4 MR 3I 51 - 80 B 6	29,8 20,8
	20,1	2222	3,55	MR 3I 81 - 80 A 4	84,6		54,5	818	2,24	MR 3I 51 - 71 C 4	31,2
	22,8 22,9	1957 1952	1,5 1,4	MR 3I 63 - 71 C 4 MR 3I 63 - 80 A 4	74,5 74,3		57 56,7	783 787	2,5 3,55	MR 3I 51 - 80 A 4 MR 3I 63 - 80 A 4	29,8 30
	22,5	1985	1,9	MR 3I 64 - 80 B 6	48,9		57,9	787	3,35	MR 2I 63 - 80 B 6	19
	22,8 22,9	1957 1952	2 1,7	MR 3I 64 - 71 C 4 MR 3I 64 - 80 A 4	74,5 74,3		59,2	754	1,06	MR 3I 41 - 71 C 4	28,7
	22,9	2022	3	MR 3I 80 - 80 B 6	49,8		61,2 59,9	729 745	1,9 1,8	MR 3I 50 - 80 B 6 MR 3I 50 - 71 C 4	18 28,4
	24	1856	1	MR 3I 51 - 80 B 6	45,7		61,2	729	2,65	MR 3I 51 - 80 B 6	18
	24,9 24,9	1794 1794	1,7 2,24	MR 3I 63 - 80 B 6 MR 3I 64 - 80 B 6	44,2 44,2		59,9 60,1	745 758	2,5 1,6	MR 3I 51 - 71 C 4 MR 2I 50 - 80 B * 6	28,4 18,3
	25,6	1740	3,35	MR 3I 80 - 80 A 4	66,3		60,1	758	2,12	MR 2I 51 - 80 B * 6	18,3
	26,9	1660	1,18	MR 3I 51 - 71 C 4 MR 3I 51 - 80 A 4	63,2		69,8	640 640	1 25	MR 3I 40 - 71 C 4	24,4
	27,3 27,7	1633 1610	1 1,8	MR 3I 51 - 80 A 4 MR 3I 63 - 71 C 4	62,2 61,3		69,8 65,5	640 681	1,25 2	MR 3I 41 - 71 C 4 MR 3I 50 - 71 C 4	24,4 26
	28,6	1561	1,9	MR 3I 63 - 80 A 4	59,5		68,1	655	2	MR 3I 50 - 80 A 4	25 26
	27,7 28,6	1610 1561	2,36 2,5	MR 3I 64 - 71 C 4 MR 3I 64 - 80 A 4	61,3 59,5		65,5 68,1	681 655	2,8 2,8	MR 3I 51 - 71 C 4 MR 3I 51 - 80 A 4	25
	29,2	1530	1,32	MR 3I 51 - 80 B 6	37,7		66,8	682	1,9	MR 2I 50 - 80 B * 6	16,5
	31,9 29,8	1399 1500	1,4 1,18	MR 3I 51 - 80 B 6 MR 3I 51 - 71 C 4	34,5 57,1		66,8 70,1	682 650	2,5 3,55	MR 2l 51 - 80 B * 6 MR 2l 63 - 80 A 4	16,5 24,3
	30,4	1468	1,25	MR 3I 51 - 80 A 4	55,9		76,2	585	1,06	MR 3I 40 - 71 C 4	22,3
	30,7	1455 1430	2 2	MR 3I 63 - 71 C 4 MR 3I 63 - 80 A 4	55,4 54.5		76,2 75,8	585 589	1,4 2,36	MR 3I 41 - 71 C 4 MR 3I 50 - 71 C 4	22,3
	31,2	1430		IVID 31 03 - 60 A 4	54,5		10,8	2009	2,30	wn 30 - /1 C 4	22,4

¹⁾ Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3.
* Mounting position **B5R** (see table ch. 2b).

P ₁											Щ.	
The color	P ₁	n ₂	M ₂	<i>f</i> s	Gear reducer - Motor	j	\mathbf{P}_1	n ₂	M ₂	<i>f</i> s	Gear reducer - Motor	i
0.75 74,8 596 224 MR 31 50 - 80 A 4 227 7 78,8 596 224 MR 31 50 - 80 A 4 227 7 78,8 597 325 MR 31 50 - 80 B 4 6 13,8 79,8 571 224 MR 21 50 - 80 B 6 143,8 9,31 6536 1,7 7 78,8 571 224 MR 21 50 - 80 B 6 6 149,9 31 6536 1,7 7 78,8 571 224 MR 21 50 - 80 B 6 6 149,9 31 6536 1,7 7 78,8 571 32 MR 21 50 - 80 B 6 6 149,9 31 6536 1,7 7 78,8 571 32 MR 21 50 - 80 B 6 6 149,9 31 6536 1,7 7 78,8 571 32 MR 21 50 - 80 B 6 6 149,9 31 6536 1,7 7 8 MR 31 10 - 90 S 6 6 101 78,8	1	rpm	lb in				hp	rpm	lb in			
0.75 74,8 596 224 MR 31 50 - 80 A 4 227 7 78,8 596 224 MR 31 50 - 80 A 4 227 7 78,8 597 325 MR 31 50 - 80 B 4 6 13,8 79,8 571 224 MR 21 50 - 80 B 6 143,8 9,31 6536 1,7 7 78,8 571 224 MR 21 50 - 80 B 6 6 149,9 31 6536 1,7 7 78,8 571 224 MR 21 50 - 80 B 6 6 149,9 31 6536 1,7 7 78,8 571 32 MR 21 50 - 80 B 6 6 149,9 31 6536 1,7 7 78,8 571 32 MR 21 50 - 80 B 6 6 149,9 31 6536 1,7 7 78,8 571 32 MR 21 50 - 80 B 6 6 149,9 31 6536 1,7 7 8 MR 31 10 - 90 S 6 6 101 78,8												
73,8 Seg 9, 2,15 MR 3I 51 - 70 C 4 2,24 Seg 9,30 0,95 MR 3I 81 - 80 C 6 129 C 73,8 Seg 9,31 S	1)				2)		1)				2)	
73,8 Seg 9, 2,15 MR 3I 51 - 70 C 4 2,24 Seg 9,30 0,95 MR 3I 81 - 80 C 6 129 C 73,8 Seg 9,31 S	0.75	74.8	596	2 24	MR 3I 50 - 80 A 4	22.7	1	7 66	7946	1 25	MR 3I 100 - 90 S 6 144	
AB Sub Sub AB Sub AB AB Sub AB AB AB AB AB AB AB A	0,73						'	· '				
79.8 671 2.24 MR 2 50 - 80 8 6 13.8 9.31 6593 2 MR 3 101 - 90 S 6 118 76.4 596 19 MR 2 50 - 80 B 6 14.9 11.4 5322 2.3 MR 3 81 - 90 C 6 101 77.9 77.8 6717 3 MR 2 51 - 80 B 6 13.8 11.4 5322 2.3 MR 3 81 - 80 C 6 101 77.9										l '		
744											l l	
73,6 617 3 MR 21 51 - 80 B * 6 6 14,9 11,4 5522 22,4 MR 31 100 - 90 S 6 96,2 89,4 499 1,4 499								10,9	5593	1,06	MR 3I 80 - 80 C 6 101	
89.4 499												
89.4 499 14.8 MR 31 40 - 71 C 4 4 199 13.5 4516 1.18 MR 31 80 - 80 B 4 126 89.4 499 14.8 MR 31 40 - 71 C 4 4 199 15.5 4516 1.5 MR 31 81 - 80 B 4 126 89.7 81.8 846 25 MR 31 50 - 71 C 4 20.3 14.1 4312 2.65 MR 31 100 - 90 S 6 77.9 81.8 846 25 MR 31 51 - 71 C 4 20.3 14.1 4312 2.65 MR 31 100 - 90 S 6 77.9 81.8 846 25 MR 31 51 - 71 C 4 20.3 15.8 3619 1.6 MR 31 81 - 80 B 4 101 82.7 851 1.06 MR 21 40 - 80 B 4 6 13.3 17.3 3827 3.35 MR 31 100 - 90 S 6 6 34.5 82.7 851 1.06 MR 21 40 - 80 B 4 6 13.2 2 20.2 3014 1.18 82.7 851 1.06 MR 21 50 - 80 B 8 6 13.2 2 20.2 3014 1.18 82.7 851 1.06 MR 21 81 - 80 B 8 6 13.2 2 20.2 3014 1.18 83.9 80.7 3.15 MR 21 51 - 80 B 8 6 13.2 2 20.2 3014 1.18 94.6 472 2.8 MR 31 50 - 80 B 8 6 13.2 2 20.2 3014 1.18 94.6 472 2.8 MR 31 50 - 80 B 8 6 13.2 2 20.2 3014 1.18 94.6 472 2.8 MR 31 50 - 80 B 8 6 13.8 2 2.9 2.861 1.2 MR 31 80 - 80 B 6 6 33.1 39.9 39.9 4 MR 31 100 90 S 6 6 33.1 39.9 39.9 4 MR 31 50 - 80 B 8 6 13.8 2 2.9 2.861 1.2 MR 31 60 - 80 B 6 6 3.1 39.9 39.9 4 MR 31 100 90 S 6 6 33.1 39.9 39.9 4 MR 31 50 - 80 B 8 6 11.8 2.2 2.9 2.861 1.2 MR 31 60 - 80 B 6 6 3.3 4 MR 21 51 - 71 C 4 18.3 2.2 2.9 2.861 1.2 MR 31 60 - 80 B 6 6 3.3 4 MR 21 51 - 80 B 8 6 13.8 3 2.2 3 5 MR 31 100 90 S 6 6 33.1 3											l l	*
89.4		1 1				· 1		· '				
81,8 546 25 MR 31 50 - 80 A 4 20.8 14,1 4312 3,55 MR 31 51 - 80 A 4 20.8 16,8 36,9 21,2 21 MR 31 80 - 80 B 4 101 82,7 551 1,06 MR 21 40 - 80 B - 6 13,3 13,3 36,3 36,4 36,5 37,5 38,9 507 2,36 MR 21 41 - 80 B - 6 13,3 20,2 30,1 30,3 30,4 31,5		89,4	499	1,4	MR 3I 41 - 71 C 4	19		13,5	4516	1,5	MR 3I 81 - 80 B 4 126	
83,7 533 3,55 MR 31 51 - 71 C 4 20.6								,	1			
81,8 546 3,55 MR 3 51 - 80 A 4 20,8 16,8 361 21,2 35 MR 3 10 - 90 S 6 63,8 89,9 507 2,36 MR 2 40 - 50 B 6 12,2 20,2 3014 0,95 0									l			
82,7 Sept. 1,08 MR 2 41 - 80 8		81,8	546	3,55	MR 3I 51 - 80 A 4	20,8				2,12		
89.9 507 2,36											MR 3I 100 - 90 S 6 63	,8
89.9 507 3.15									1			
94,6 472 2.8 MR 31 51 - 80 A 4 18 20,1 3030 2.5 MR 31 81 - 80 B 4 84,6 MR 31 51 - 80 A 4 18 20,7 2937 4 18 310 - 90 S 6 53,1 81												
94,6 472 4 MR 21 40 - 80 B - 6 11.8 2.9 2661 1.1 4 MR 21 40 - 80 B - 6 11.8 2.9 2661 1.1 4 MR 21 41 - 80 B - 6 11.8 2.9 2661 1.1 4 MR 21 41 - 80 B - 6 11.8 2.9 2661 1.1 4 MR 21 41 - 80 B - 6 11.8 2.9 2661 1.1 4 MR 21 40 - 80 B - 6 11.8 2.9 2661 1.1 4 MR 21 40 - 80 B - 6 11.8 2.9 2661 1.1 4 MR 21 40 - 80 B - 6 11.8 2.9 2661 1.1 4 MR 21 40 - 80 B - 6 11.8 2.9 2661 1.1 4 MR 21 40 - 80 B - 6 11.8 2.9 2661 1.1 4 MR 21 40 - 80 B - 6 11.8 2.9 2661 1.1 4 MR 21 40 - 80 B - 6 11.8 2.9 2.1 2758 2.8 MR 21 63 - 80 C C 6 49.9 10.6 427 3.15 MR 21 40 - 80 B - 6 10.6 24.9 2446 1.1 4 MR 21 40 - 80 B - 6 10.6 24.9 2446 1.1 4 MR 21 40 - 80 B - 6 10.6 24.9 2446 1.1 4 MR 21 40 - 80 B - 6 10.6 24.9 2446 1.1 4 2.8 MR 31 63 - 80 C C 6 49.9 11.4 4 0.0 3.15 MR 21 40 - 80 B - 6 10.6 24.9 2446 1.1 4 2.8 MR 31 64 - 80 C C 6 49.9 11.4 4 0.0 3.15 MR 21 50 - 71 C 4 16.5 22.5 25.5 25.9 2 1.5 MR 31 64 - 80 C C 6 49.9 11.4 4 0.0 3.15 MR 21 50 - 71 C 4 16.5 22.5 25.5 25.9 2 1.5 MR 31 64 - 80 C C 6 49.9 11.4 4 0.0 3.15 MR 21 50 - 71 C 4 16.5 22.6 2373 2.5 1 1.5 MR 31 64 - 80 C C 6 49.9 11.4 4 0.0 3.15 MR 21 50 - 71 C 4 16.5 22.6 2373 2.5 1 1.5 MR 31 64 - 80 C C 6 49.9 11.4 4 0.0 3.15 MR 21 50 - 71 C 4 16.5 22.6 2373 2.5 1 1.5 MR 31 64 - 80 C C 6 36.6 11.3 MR 21 50 - 71 C 4 16.5 22.6 2373 2.5 1 1.5 MR 31 64 - 80 C C 6 36.6 11.3 MR 21 50 - 71 C 4 16.5 22.6 2373 2.5 1 1.5 MR 31 64 - 80 C C 6 36.6 11.3 MR 21 50 - 71 C 4 16.5 22.6 2373 2.5 1 1.5 MR 31 64 - 80 C C 6 36.6 11.1 4 11.4 4 11.4 80 B - 6 7.9 8 11.1 4 11.4 80 B - 6 7.9 8 11.1 4 11.4 80 B - 6 7.9 8 11.1 4 11.4 80 B - 6 7.9 8 11.1 4 11.4 80 B - 6 7.9 8 11.5 MR 31 64 - 80 C C 6 36.6 11.1 8 11												
92,9 491 2.5 MR 21 50 - 0 71 C 4 18.3 22.9 2661 1 MR 31 63 - 80 B 4 74,3 92.9 491 3.15 MR 21 51 - 71 C 4 18.3 22.9 2661 1.25 MR 31 64 - 80 B 4 74,3 92.9 105 427 3.15 MR 31 50 - 80 A 4 15.3 22.1 2758 2.8 MR 31 64 - 80 B 4 74,3 92.1 105 427 3.15 MR 31 50 - 80 A 4 15.3 22.1 2758 2.8 MR 31 64 - 80 B 4 74,3 92.1 105 427 3.15 MR 31 50 - 80 A 4 15.3 22.1 2758 2.8 MR 31 81 - 80 C 6 49.8 105 427 3.15 MR 31 50 - 80 A 4 15.3 24.9 24.6 1.12 MR 31 60 - 80 B 6 6 10.6 23.5 2592 1.5 MR 31 63 - 80 B 6 6 10.6 23.5 2592 1.5 MR 31 63 - 80 B 6 6 10.6 23.5 2592 1.5 MR 31 64 - 80 B 6 6 10.6 22.5 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 22.5 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 22.5 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 22.5 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 22.5 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 22.5 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 21.0 1.5 MR 31 64 - 80 B 6 6 10.6 1.5 MR 31 64 - 80 B 6 6 10.6 1.5 MR 31 64 -								20,7			MR 3I 100 - 90 S 6 53	, 1
12 39 3,15 MR 2 51 - 71 C 4 18,3 22,9 266 1,25 MR 3 64 - 80 8 4 74,3 105 427 3,15 MR 3 50 - 80 A 4 16,3 22,1 2758 2,12 MR 3 80 - 80 C 6 49,8 106 438 1,4 MR 2 40 - 80 B 6 10,6 24,9 2446 1,12 MR 3 80 - 80 C 6 49,8 106 438 1,1 MR 2 40 - 80 B 6 10,6 24,9 2446 1,12 MR 3 80 - 80 C 6 44,2 103 441 2,8 MR 2 50 - 71 C 4 16,5 22,5 2592 1,5 MR 3 80 - 80 C 6 44,2 114 400 3,15 MR 2 50 - 71 C 4 16,5 22,5 2592 1,5 MR 3 80 - 80 C 6 49,8 114 400 3,15 MR 2 50 - 71 C 4 16,5 22,6 2373 2,5 49,8 24,4 103 441 3,75 MR 2 51 - 71 C 4 13,3 2,6 6 12,9 1,8 MR 3 80 - 80 C 6 34,5 128 356 1,6 MR 2 41 - 80 B 6 9,41 22,5 2362 2,8 MR 3 80 - 80 C 6 34,5 128 356 1,7 MR 2 41 - 80 B 6 7,98 31,2 1950 1,8 MR 3 64 - 80 B 4 59,5 138 331 1,8 MR 2 40 - 80 B 6 7,98 31,2 1950 1,8 MR 3 64 - 80 B 4 59,5 138 331 1,8 MR 2 40 - 71 C 4 13,8 31,2 1950 1,8 MR 3 64 - 80 B 4 59,5 139 326 3,55 MR 2 50 - 71 C 4 13,8 31,2 1950 1,8 MR 3 64 - 80 B 4 59,5 139 326 3,55 MR 2 50 - 71 C 4 13,8 31,2 1950 1,8 MR 3 64 - 80 B 4 59,5 145 315 1,8 MR 2 40 - 71 C 4 13,8 31,2 1950 1,8 MR 3 64 - 80 B 4 59,5 157 289 1 MR 2 40 - 71 C 4 13,8 31,2 1950 1,8 MR 3 64 - 80 B 4 59,5 158 325 335 MR 2 50 - 71 C 4 13,8 33,2 1,8 MR 3 64 - 80 B 4 59,5 157 289 1 MR 2 40 - 71 C 4 13,8 33,2 1,8 MR 3 64 - 80 B 4 59,5 157 289 1 MR 2 40 - 71 C 4 13,8 33,5 MR 3 64 - 80 B 4 59,5 158 316 315 316 315 315 315 315 315 315 315 315 315 315 315 315 315 315 315		93,6		1,5	MR 2I 41 - 80 B * 6							
112 399 1,15 MR 31 40 - 71 C 4 15,2 22,1 2758 2,12 MR 31 80 - 80 C 6 49,8 106 47 3,15 MR 31 50 - 80 A 4 15,2 22,1 2758 2,8 MR 31 81 - 80 C 6 49,8 106 438 1,4 MR 21 40 - 80 B * 6 10,6 24,9 2446 1,8 MR 31 63 - 80 C 6 44,2 105 434 1,18 MR 21 40 - 71 C 4 16,5 23,5 2992 1,15 MR 31 83 - 80 C 6 44,2 114 4 12,8 MR 21 50 - 71 C 4 14,9 25,6 2373 3,35 MR 31 84 - 80 C 6 44,2 114 4 12,8 MR 21 50 - 71 C 4 14,9 25,6 2373 3,35 MR 31 84 - 80 C 6 44,2 114 4 14 1,4 MR 21 40 - 71 C 4 16,5 23,5 2992 1,5 MR 31 80 - 80 B 4 66,3 114 3,75 MR 21 50 - 71 C 4 14,9 25,6 2373 3,35 MR 31 80 - 80 B 4 66,3 114 3,75 MR 21 50 - 71 C 4 16,5 22,6 2373 3,35 MR 31 80 - 80 B 4 66,3 114 3,75 MR 21 50 - 71 C 4 16,5 22,6 2373 3,35 MR 31 80 - 80 B 4 66,3 114 3,75 MR 21 41 - 80 B * 6 9,41 25,6 2129 1,8 MR 31 81 - 80 B 8 4 59,5 117 300 2 MR 21 41 - 80 B * 6 7,98 31,2 1950 1,5 MR 31 80 - 80 B 4 58,7 139 328 3,55 MR 21 50 - 71 C 4 12,8 32 2,9 2103 3,75 MR 21 50 - 71 C 4 12,8 32 2,1 12,1 12,1 12,1 12,1 12,1 12,1 12												
105								22,1	2758	2,12	MR 3I 80 - 80 C 6 49	,8
104		1						· '				
104		104	438	1,4	MR 2I 40 - 80 B * 6	10,6						
103				1 '								
114 398 2.8 MR 21 50 - 80 A 4 14.9 25,6 2373 3.35 MR 31 81 - 80 B 4 66.3 MR 21 50 - 80 A 4 14.9 25,6 2213 3.35 MR 31 81 - 80 B 4 69.5 128 356 1,6 MR 21 40 - 71 C 4 13.3 3,7 MR 21 50 - 80 A 4 12.5 123 370 3.35 MR 31 81 - 80 B 4 59.5 123 370 3.35 MR 31 81 - 80 B 4 59.5 123 370 3.35 MR 21 50 - 71 C 4 13.8 31.9 1908 1,0 MR 31 63 - 80 B 4 59.5 123 370 3.35 MR 21 50 - 71 C 4 13.8 31.9 1908 1,0 MR 31 63 - 80 B 4 54.5 MR 31 64 - 80 B 4 54.5 MR 31 63 - 80 B 4 54.5 MR 31 63 - 80 B 4 54.5 MR 31 63 - 80 B 4 54.5 MR 31 64 - 80 B 4 58.7 MR 31 64 - 80 B 4 48.9 MR 31 64 - 80 B 4 44.2								23,5		1,5	MR 3I 64 - 90 S 6 46	,9
103		1						, ,				
128								· '				
117										1,8		
123 370 3.55 MR 2 50 - 71 C		117	390	2	MR 2I 41 - 80 B * 6			· '				
138		1										
138												
139 328 3,55 MR 21 50 - 80 A 4 12.2 157 289 1 1 MR 21 32 - 71 C * 4 10,8 150 303 2.5 MR 21 41 - 80 B * 6 7,32 158 295 4 MR 21 41 - 71 C 4 11,8 155 295 4 MR 21 50 - 80 A 4 11 178 256 1,18 MR 21 32 - 71 C * 4 10,6 181 252 2,36 MR 21 40 - 71 C 4 10,6 181 252 3 MR 21 41 - 71 C 4 10,6 181 252 3 MR 21 41 - 71 C 4 10,6 181 252 3 MR 21 41 - 71 C 4 10,6 181 252 3 MR 21 41 - 71 C 4 10,6 181 252 3 MR 21 41 - 71 C 4 10,6 181 252 3 MR 21 41 - 71 C 4 10,6 181 252 3 MR 21 41 - 71 C 4 10,6 181 252 3 MR 21 41 - 71 C 4 10,6 181 252 3 MR 21 41 - 71 C 4 10,6 181 252 3 MR 21 41 - 71 C 4 10,6 181 252 3 MR 21 41 - 71 C 4 10,4 171 267 4,75 MR 21 50 - 80 A 4 9,90 188 243 5,3 MR 21 50 - 80 A 4 9,90 218 1,4 MR 21 50 - 80 A 4 9,90 218 1,4 MR 21 32 - 71 C * 4 8,12 223 196 3,75 MR 21 40 - 71 C 4 7,98 233 195 1,5 MR 21 40 - 71 C 4 7,32 233 195 1,5 MR 21 41 - 71 C 4 7,32 246 1322 2,12 MR 31 64 - 80 B 4 34,5 247 1751 1,7 MR 31 63 - 80 B 4 44,2 248 189 240 - 71 C 4 10,4 41 1483 1,25 MR 31 51 - 80 B 4 44,2 42,3 1439 2 MR 31 51 - 80 B 4 44,2 43,6 MR 31 51 - 80 B 4 44,2 43,6 MR 31 51 - 80 B 4 44,2 43,6 MR 31 51 - 80 B 4 44,2 44,2 252 189 189 189 189 189 189 189 189 189 189		1						31,2	1950	1,8	MR 3I 64 - 80 B 4 54	,5
157		1		3,75					1			
145		1		1				· '				
150								33,6	1813	1,06	MR 3I 51 - 80 B 4 50	,6
150		150	303	2,5	MR 2I 41 - 80 B * 6	7,32			1			
155								, ,	1		l l	,
178								· '				
161					MR 2I 32 - 71 C * 4			37,2	1638	1,06	MR 3I 51 - 80 B 4 45	,7
161 283 2,65 MR 2I 41 - 71 C 4 9,41 164 279 4,5 MR 2I 50 - 71 C 4 10,4 171 C 4 10,4 11 C 4 1												
181												
171		181	252	3	MR 2I 41 - 71 C 4	9,41						
188		1										,
209 218 1,4 MR 2I 32 - 71 C * 4 8,12 213 22 32 31 3,55 MR 2I 41 - 71 C 4 7,98 232 196 3 MR 2I 40 - 71 C 4 7,32 232 196 3,75 MR 2I 41 - 71 C 4 7,32 232 196 3,75 MR 2I 41 - 71 C 4 7,32 233 136 136 1,8 MR 2I 32 - 71 C * 4 6,33 336 136 1,8 MR 2I 32 - 71 C * 4 5,06 MR 2I 32 - 71 C * 4 5,06 MR 2I 32 - 71 C * 4 5,06 MR 2I 32 - 71 C * 4 6,22 33 3 36 136 1,8 MR 2I 32 - 71 C * 4 5,06 MR 2I 32 - 71 C * 4 5,06 MR 2I 32 - 71 C * 4 6,22 3								42,3	1439	2	MR 3I 63 - 80 B 4 40	,2
213												
233		213	214	2,8	MR 2I 40 - 71 C 4	7,98						
233												
232								51,3	1187	2,36	MR 3I 63 - 80 B 4 33	,2
268 170 1,8 MR 2I 32 - 71 C * 4 6,33 MR 2I 40 - 71 C 4 6,22 336 136 1,8 MR 2I 32 - 71 C * 4 5,06 S 5,7 1067 1,8 MR 3I 50 - 80 B 4 29,8 MR 3I 51 - 80 B 4 29,8 MR 3I 51 - 80 B 4 29,8 MR 3I 51 - 80 B 4 30												
273 167 3,55 MR 2I 40 - 71 C 4 6,22 57 1067 1,8 MR 3I 51 - 80 B 4 29,8 336 136 1,8 MR 2I 32 - 71 C * 4 5,06 56,7 1073 2,65 MR 3I 63 - 80 B 4 30		268			MR 2I 32 - 71 C * 4			· '				
			167		MR 2I 40 - 71 C 4	6,22			1			
342 133 3,75 MR 2I 4U - 71 C 4 4,97 56,7 1073 3,55 MR 3I 64 - 80 B 4 30								56,7	1073	2,65	MR 3I 63 - 80 B 4 30	
		342	133	3,/5	MR 21 40 - 71 C 4	4,9/		56,7	1073	3,55	MH 31 64 - 80 B 4 30	

¹⁾ Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3. * Mounting position **B5R** (see table ch. 2b).

P ₁	n ₂	<i>M</i> ₂	fs	Gear reducer - Motor	i	P ₁	n ₂	M ₂	fs	Gear reducer - Motor	j
hp	rpm	lb in				hp	rpm	lb in			
1)				2)		1)				2)	
1	59,9	1016	1,32	MR 3I 50 - 80 B * 4 MR 3I 51 - 80 B * 4	28,4	1	292 292	213	2,8 3,55	MR 2I 40 - 80 B ** 4 MR 2I 41 - 80 B ** 4	5,83 5,83
	59,9 62,4	1016 975	1,9	MR 3I 63 - 80 B 4	28,4 27,2		343	213 181	3,15	MR 2I 40 - 80 B ** 4	3,63 4,96
	62,4 68,1	975 893	4 1,5	MR 3I 64 - 80 B 4	27,2 25		429	145	3,35	MR 2I 40 - 80 B ** 4	3,96
	68,1	893	2	MR 3I 51 - 80 B 4	25	1,5	9,31	9587	1,12	MR 3I 100 - 90 L 6	118
	70,1 74,8	887 813	2,5 1,6	MR 2I 63 - 80 B 4 MR 3I 50 - 80 B 4	24,3 22,7		9,31	9587 7806	1,4 1,5	MR 3I 101 - 90 L 6 MR 3I 100 - 90 L 6	118 96.2
	74,8 72,9	813 835	2,36 3,35	MR 3I 51 - 80 B 4 MR 3I 63 - 80 B 4	22,7 23,3		11,4	7806	2	MR 3I 101 - 90 L 6	96,2
	81,1	751	3,75	MR 3I 63 - 80 B 4	21		11,8	7541	1,32	MR 3I 100 - 90 S 4	144
	74 81,8	840 744	1,32 1,8	MR 2I 50 - 80 C 6 MR 3I 50 - 80 B 4	14,9 20,8		13,1 13,5	6839 6624	0,95	MR 3I 81 - 90 L 6 MR 3I 81 - 80 C 4	84,3 126
	81,8	744	2,5 1,7	MR 3I 51 - 80 B 4	20,8		14,1 14,1	6324 6324	1,8 2,5	MR 3I 100 - 90 L 6 MR 3I 101 - 90 L 6	77,9 77,9
	89,9 89,9 89,5	691 691 694	2,24 3,55	MR 2I 50 - 80 C 6 MR 2I 51 - 80 C 6 MR 2I 63 - 80 B 4	12,2 12,2 19		14,4 14,4	6203 6203	1,7 2,12	MR 3I 100 - 90 S 4 MR 3I 101 - 90 S 4	118 118
	94,6	643	2,12	MR 3I 50 - 80 B 4	18		16,3	5480 5308	1,06	MR 3I 80 - 90 L 6 MR 3I 80 - 80 C 4	67,5
	94,6 100	643 621	3 2	MR 3I 51 - 80 B 4 MR 2I 50 - 80 C 6	18 11		16,8 16,3	5480	1,12	MR 3I 81 - 90 L 6	101 67,5
	93,9 100	662 621	1,7 2,65	MR 2I 50 - 90 S 6 MR 2I 51 - 80 C 6	11,7 11		16,8 17,7	5308 5051	1,5 2,36	MR 3I 81 - 80 C 4 MR 3I 100 - 90 S 4	101 96,2
	100	619	4,25	MR 2I 63 - 80 B 4	16,9		17,7 20,1	5051 4444	3 1.32	MR 3I 101 - 90 S 4 MR 3I 80 - 80 C 4	96,2 84,6
	105 105	582 582	2,24 3,15	MR 3I 50 - 80 B 4 MR 3I 51 - 80 B 4	16,3 16,3		20,2	4425	1,25	MR 3I 80 - 90 S 4	84,3
	104 110	596 562	1,06 2,24	MR 2I 41 - 80 C ** 6 MR 2I 50 - 80 C 6	10,6 9,96		20,1 20,2	4444 4425	1,7 1,5	MR 3I 81 - 80 C 4 MR 3I 81 - 90 S 4	84,6 84,3
	114 114	544 543	2,12	MR 2I 50 - 90 S 6 MR 2I 50 - 80 B 4	9,64 14,9		20,7	4307 4291	2,65 1.4	MR 3I 100 - 90 L 6 MR 3I 80 - 90 L 6	53,1 52,9
	114	544	2,8	MR 2I 51 - 90 S 6	9,64		20,8 21,8	4291 4092	1,8 2,8	MR 3I 81 - 90 L 6 MR 3I 100 - 90 S 4	52,9 77,9
	128 128	486 486	1,12 1,25	MR 2I 40 - 80 B * 4 MR 2I 41 - 80 B * 4	13,3 13,3		21,8	4092	3,75	MR 3I 101 - 90 S 4	77,9
	121 127	512 489	2,5 2,5	MR 2I 50 - 80 C 6 MR 2I 50 - 90 S 6	9,07 8,67		23,5 25,6	3802 3483	1,06	MR 3I 64 - 90 L 6 MR 3I 64 - 90 L 6	46,9 42,9
	121 127	512 489	3,55 3,35	MR 2I 51 - 80 C 6 MR 2I 51 - 90 S 6	9,07 8,67		25,6 25,2	3480 3546	1,7 1,7	MR 3I 80 - 80 C 4 MR 3I 80 - 90 S 4	66,3 67,5
	130	478	1,25	MR 2I 40 - 80 C ** 6	8,46		25,6 25,2	3480 3546	2,24 2,24	MR 3I 81 - 80 C 4 MR 3I 81 - 90 S 4	66,3 67,5
	132 130	472 478	1,06 1,6	MR 2I 40 - 80 B ** 4 MR 2I 41 - 80 C ** 6	12,9 8,46		24	3723	3,15	MR 3I 100 - 90 L 6	45,9
	139 139	447 447	2,65 3,35	MR 2I 50 - 80 B 4 MR 2I 51 - 80 B 4	12,2 12,2		28,6 28,5	3123 3128	0,95 1,25	MR 3I 63 - 80 C 4 MR 3I 64 - 90 L 6	59,5 38,5
	145	430	1,32	MR 2I 40 - 80 B * 4	11,8		28,6 27,7	3123 3227	1,25 1,8	MR 3I 64 - 80 C 4 MR 3I 80 - 90 L 6	59,5 39,8
	147 145	423 430	1,8 1,6	MR 2I 41 - 80 C ** 6 MR 2I 41 - 80 B * 4	7,5 11,8		27,7 26,7	3227 3347	2,5 3,55	MR 3I 81 - 90 L 6 MR 3I 100 - 90 S 4	39,8 63,8
	155	402	3	MR 2I 50 - 80 B 4	11		31,6	2827	1,06	MR 3I 63 - 90 L 6	34,8
	161 181	386 344	1,5 1,7	MR 2I 40 - 80 B * 4	10,6 9,41		31,2 31,6	2861 2827	1 1,4	MR 3I 63 - 80 C 4 MR 3I 64 - 90 L 6	54,5 34,8
	161 181	386 344	1,4 1,7	MR 2I 40 - 80 B ** 4 MR 2I 40 - 80 B ** 4	10,6 9,41		31,2 29	2861 3075	1,25 1,06	MR 3I 64 - 80 C 4 MR 3I 64 - 90 S 4	54,5 58,6
	161 181	386 344	1,9 2,24	MR 2I 41 - 80 B * 4 MR 2I 41 - 80 B * 4	10,6 9,41		28,9 28,9	3084 3090	1,9 1,8	MR 3I 80 - 80 C 4 MR 3I 80 - 90 S 4	58,7 58,8
	161 181	386 344	1,6	MR 2I 41 - 80 B ** 4 MR 2I 41 - 80 B ** 4	10,6 9,41		32,1	2777	2,12	MR 3I 80 - 90 S 4	52,9
	171	364	3,35	MR 2I 50 - 80 B 4	9,96		28,9 28,9	3084 3090	2,65 2,36	MR 3I 81 - 80 C 4 MR 3I 81 - 90 S 4	58,7 58,8
	201 201	309 309	1,9 2,36	MR 2I 40 - 80 B ** 4 MR 2I 41 - 80 B ** 4	8,46 8,46		32,1 29,3	2777 3047	2,8 3,75	MR 3I 81 - 90 S 4 MR 3I 100 - 90 S 4	52,9 58
	188 205	331 303	3,75 4,25	MR 2I 50 - 80 B 4 MR 2I 50 - 80 B 4	9,07 8,29		32	2787 2569	4,25 1,18	MR 3I 100 - 90 S 4 MR 3I 63 - 90 L 6	53,1 31,7
	213	292	2	MR 2I 40 - 80 B * 4	7,98		34,7 34,7	2569	1,12	MR 3I 63 - 80 C 4	48,9
	227 213	274 292	2,12 2,65	MR 2I 40 - 80 B ** 4 MR 2I 41 - 80 B * 4	7,5 7,98		32,6 36,3	2740 2460	1,06 1,18	MR 3I 63 - 90 S 4 MR 3I 63 - 90 S 4	52,2 46,9
	227	274	2,65	MR 2I 41 - 80 B ** 4	7,5		34,7 34,7	2569 2569	1,5 1,5	MR 3I 64 - 90 L 6 MR 3I 64 - 80 C 4	31,7 48,9
	237 267	262 232	4,75 2,5	MR 2I 50 - 80 B 4 MR 2I 40 - 80 B ** 4	7,17 6,36		32,6 36,3	2740 2460	1,32 1,5	MR 3I 64 - 90 S 4 MR 3I 64 - 90 S 4	52,2 46,9
	267 262	232 237	3,15 5,3	MR 2I 41 - 80 B ** 4 MR 2I 50 - 80 B 4	6,36		34,1	2617 2461	2,24 2,36	MR 3I 80 - 80 C 4 MR 3I 80 - 90 S 4	49,8 46,9
	202	231	ک,ن	WIT ZI 3U = 0U B 4	6,49		36,3	Z40 I	2,30	INIT 31 0U - 9U 5 4	40,9

Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M₂ increases and fs decreases proportionately.
 For complete designation when ordering, see ch. 3.
 Mounting position **B5R** (see table ch. 2b).
 Mounting position B5A (see table ch. 2b).

Property											Щ	
1.5 34.1 2617 3 3 31.5 31.5 31.5 31.5 31.5 32.5 32.5 33.4 33.5 33.5 33.5 33.6 22.21 1.25 33.	P ₁	n ₂	M ₂	fs	Gear reducer - Motor	i	P,	n ₂	M ₂	fs	Gear reducer - Motor	i
1.5 34.1 26.1 3.1 3. MR 3 18.1 80 C 4 49.8 1.5 100 28.8 3.15 MR 2 18.5 0.8 1 4 89.5 38.4 2322 1.25 MR 3 18.5 0.8 4 48.9 100 39.7 3. MR 2 18.5 0.8 0 C 4 44.2 100 39.7 3. MR 2 18.5 0.8 0 C 4 44.2 100 39.7 3. MR 2 18.5 0.8 0 C 4 18.2 3. MR 3 18.5 0.8 0 C 4 44.2 100 39.7 3. MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 1.25 MR 3 18.5 0.8 0 C 4 44.2 100 39.7 3. MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 1.25 MR 3 18.5 0.8 0 C 4 44.2 100 39.7 3. MR 2 18.5 0.0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 44.2 100 39.7 3. MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 44.2 100 39.7 3. MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 47.5 0.8 3.7 3. MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 10.5 38.9 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 10.5 38.9 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 10.5 38.9 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 10.5 38.9 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 10.5 38.9 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 10.5 38.9 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 10.5 38.9 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 38.8 12.5 3. 38.8 12.2 39.8 12.5 39.8 12.5 39.8 12.5 39.8 12.5 39.8 12.5 39.8 12.5 39.8 12.5 39.8 12.5 39.8		rpm	lb in				hp	rpm	lb in			
1.5 34.1 26.1 3.1 3. MR 3 18.1 80 C 4 49.8 1.5 100 28.8 3.15 MR 2 18.5 0.8 1 4 89.5 38.4 2322 1.25 MR 3 18.5 0.8 4 48.9 100 39.7 3. MR 2 18.5 0.8 0 C 4 44.2 100 39.7 3. MR 2 18.5 0.8 0 C 4 44.2 100 39.7 3. MR 2 18.5 0.8 0 C 4 18.2 3. MR 3 18.5 0.8 0 C 4 44.2 100 39.7 3. MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 1.25 MR 3 18.5 0.8 0 C 4 44.2 100 39.7 3. MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 1.25 MR 3 18.5 0.8 0 C 4 44.2 100 39.7 3. MR 2 18.5 0.0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 44.2 100 39.7 3. MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 44.2 100 39.7 3. MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 47.5 0.8 3.7 3. MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.3 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.6 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 10.5 38.9 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 10.5 38.9 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 10.5 38.9 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 10.5 38.9 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 10.5 38.9 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 10.5 38.9 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 10.5 38.9 2.25 MR 2 18.5 0.8 0 C 4 18.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 7.8 8.2 3. 38.8 12.7 38.8 12.5 3. 38.8 12.2 39.8 12.5 39.8 12.5 39.8 12.5 39.8 12.5 39.8 12.5 39.8 12.5 39.8 12.5 39.8 12.5 39.8	4				0)						2)	
36,3 2461 3,15 MR 31 81 - 90 S 4 4 66,9 100 91 1 14 MR 21 50 - 90 L 6 11/3 39,6 2264 1,25 MR 31 63 - 90 S 4 42,9 100 91 1 14 MR 21 50 - 90 L 6 11/3 38,4 2262 1,76 MR 31 64 - 80 C 4 44,2 100 91 1 19 MR 21 51 - 90 L 6 11/3 38,4 2262 1,76 MR 31 64 - 80 C 4 42,2 100 91 1 19 MR 21 51 - 90 L 6 11/3 38,4 2262 1,76 MR 31 64 - 80 C 4 42,6 105 86,4 16,6 MR 31 51 - 80 C 4 43,6 110 82,5 11					·		l				,	
98.4 2322 125 MR 3 63 - 90 C	1,5						1,5					
39,6 2254 1,25 MR 31 63 - 90 S 4 4429 38,6 2254 1,6 MR 31 64 - 90 C 4 4426 39,6 2254 1,6 MR 31 64 - 90 C 4 426 39,6 2257 3,55 MR 31 81 - 90 C 4 446 42,8 2110 1,4 MR 31 63 - 90 S 4 462 42,3 2110 1,4 MR 31 63 - 90 S 4 48,6 110 62 63 1,6 MR 21 63 - 90 C 4 416,6 144,1 2024 1,4 MR 31 63 - 90 S 4 48,6 110 62 63 1,4 MR 21 63 - 90 C 4 44,6 110 62 63 1,4 MR 21 63 - 90 C 4 41,6 110 62 63 1,4 MR 21 63 - 90 C 4 42,6 110 62 63 1,4 MR 21 63 - 90 C 4 42,6 110 62 63 1,4 MR 21 63 - 90 C 4 42,6 110 62 63 1,4 MR 21 63 - 90 C 4 42,6 110 62 63 1,4 MR 21 63 - 90 C 4 42,6 110 62 63 1,4 MR 21 63 - 90 C 4 42,6 110 62 63 1,4 MR 21 63 - 90 C 4 42,6 110 62 63 1,4 MR 21 63 - 90 C 4 42,6 110 62 63 1,4 MR 21 63 - 90 C 4 42,6 110 62 63 1,4 MR 21 63 - 90 C 4 42,6 110 62 63 1,4 MR 21 63 - 90 C 4 42,6 110 62 63 1,4 MR 21 63 - 90 C 4 43,6 110 63 1,4 MR 21 63 - 90 C 4 43,6 110 63 1,4 MR 21 63 - 90 C 4 43,6 110 63 1,4 MR 21 63 - 90 C 4 43,6 110 63 1,4 MR 21 63 - 90 C 4 43,6 110 63 1,4 MR 21 63 - 90 C 4 43,6 110 63 1,4 MR 21 63 - 90 C 4 43,6 110 63 1,4 MR 21 63 - 90 C 4 43,6 110 63 1,4 MR 21 63 - 90 C 4 43,6 110 63 1,4 MR 21 63 - 90 C 4 43,6 110 63 1,4 MR 21 63 - 90 C 4 43,6 110 63 1,4 MR 21 63 - 90 C 4 43,6 110 63 1,4 MR 21 63 - 90 C 4 43,6 110 63 1,4 MR 21 63 - 90 C 4 43,6 110 63 1,4 M				· '				93,9	970	1,12	MR 2I 50 - 90 L 6	11,7
99. 2267		39,6	2254	1,25	MR 3I 63 - 90 S 4	42,9						
39												
48.51 1980		39	2287	2,5	MR 3I 80 - 80 C 4	43,6		105	854	2,24	MR 3I 51 - 80 C 4	16,3
42.3				· '							WITT 21 30 30 E 0	
42,3								114	797	1,4		14,9
44.1 2024 1.5			l									
12,7 2088 2,8 MR 31 81 90 S 4 59,8 105 869 2,65 MR 21 63 - 90 S 4 16,2								108	841	3,15	MR 2I 63 - 90 L 6	10,2
42.7 20.8 3.76 MR 31 81 - 90 S 4 30.8 127 718 1.7 MR 21 50 - 90 L 6 8.67 44.9 20.31 2.24 MR 21 80 - 90 L 6 24.3 127 718 2.35 MR 21 51 - 90 L 6 8.67 44.9 20.31 2.24 MR 21 80 - 90 L 6 24.5 120 760 3.35 MR 21 50 - 90 L 6 7.85 4.5												
44,9 2031 224 MR 21 80 - 90 L 6 24,5 120 760 3,35 MR 21 63 - 80 C 4 14,2												
49.3 1811 1.06 MR 31 51 - 80 C 4 34.5 4 65.6 13.9 MR 21 50 - 80 L 6 7.85 65.6 1.8 MR 21 51 - 80 C 4 12.7 65.7 186.6 1.25 MR 21 51 - 80 C 4 12.7 65.7 186.6 1.25 MR 31 64 - 80 C 4 36.9 13.9 6.6 5.2 MR 21 51 - 80 C 4 12.7 64.8 182.9 1.6 MR 31 64 - 80 C 4 36.9 13.4 682 4 MR 21 51 - 80 C 4 12.7 64.8 182.9 1.6 MR 31 64 - 80 C 4 36.9 13.4 682 4 MR 21 63 - 80 S 4 12.7 64.8 182.9 1.6 MR 31 64 - 80 C 4 36.9 13.4 682 4 MR 21 63 - 80 S 4 12.7 64.8 182.9 1.6 MR 31 64 - 80 C 4 29.8 155 50 2 MR 21 63 - 80 S 4 12.7 65.7 156.6 1.25 MR 31 64 - 80 C 4 29.8 155 50 2 MR 21 50 - 80 C 4 11.7 65.7 1574 12.6 MR 31 64 - 80 C 4 30 155 50 2 MR 21 50 - 80 C 4 11.3 65.7 166.2 1.7 MR 31 63 - 80 C 4 30 154 50 2 3 MR 21 50 - 80 C 4 11.3 65.7 166.2 1.7 MR 31 64 - 80 C 4 30 155 50 2 MR 21 50 - 80 C 4 11.3 65.7 166.2 1.7 MR 31 63 - 90 S 4 31.7 155 590 2.8 MR 21 51 - 80 C 4 11.3 65.7 166.2 1.7 MR 31 63 - 90 S 4 31.7 155 590 2.8 MR 21 51 - 80 C 4 11.3 65.7 166.2 1.7 MR 31 63 - 90 S 4 31.7 155 590 2.8 MR 21 51 - 80 C 4 11.3 65.7 166.2 1.7 MR 31 63 - 90 S 4 31.7 150 666 4.25 MR 21 63 - 80 C 4 11.3 65.7 166.2 1.7 MR 31 63 - 90 S 4 31.7 150 666 4.25 MR 21 63 - 80 C 4 11.3 65.7 166.2 1.7 MR 31 63 - 90 S 4 30.8 181 60 66 4.25 MR 21 63 - 80 C 4 11.3 65.7 1674 2.5 MR 31 80 - 90 S 4 30.8 181 60 66 4.25 MR 21 63 - 80 C 4 11.3 65.7 1674 2.5 MR 31 80 - 90 S 4 30.8 181 60 66 4.25 MR 21 63 - 80 C 4 11.3 65.7 1674 2.5 MR 31 80 - 90 S 4 30.8 181 60 66 4.25 MR 21 63 - 80 C 4 4 13.0 66 4 12.7 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18			1									
46												
48,8 1829 1.6 MR 31 63 - 90 S 4 34,8 139 656 2.66 MR 21 51 - 80 C 4 12,7		46	1939	1,4	MR 3I 63 - 80 C 4	36,9		139	656	1,8	MR 2I 50 - 80 C 4	12,2
46												
48,8 1829 2,12 MR 31 54 - 90 S 4 34,8 154 590 2,12 MR 21 50 - 90 C 6 7,14 7,14 7,15 7		46	1939	1,8	MR 3I 64 - 80 C 4	36,9		134	682	4	MR 2I 63 - 80 C 4	12,7
48,9												
57												
53,7 1662 1.7 MR 31 63 - 90 S									628	1,7		
56,7 1574 2,5 MR 31 64 - 80 C 4 30.8 148 617 4,25 MR 21 63 - 80 C 4 11,3												
51,9										4,25		
55,2 161/ 3,55 MR 3 80 - 90 S												
57,9 1574 2 MR 2 64 - 90 L								181			MR 2I 40 - 80 C ** 4	- , -
62.4 1431 2 MR 3I 63 90 S 4 29.1 171 534 2.36 MR 2I 50 - 90 S 4 9.96 62.4 1431 2 65 MR 3I 63 - 90 S 4 29.1 176 516 3 MR 2I 51 - 80 C 4 9.96 62.4 1431 2.65 MR 3I 64 - 80 C 4 27.2 176 516 3 MR 2I 51 - 90 S 4 9.66 68.1 1310 1, MR 3I 55 - 80 C 4 25 201 453 1.32 MR 2I 40 - 80 C ** 4 8.46 68.1 1310 1, MR 3I 55 - 80 C 4 25 201 453 1.6 MR 2I 41 - 80 C ** 4 9.07 665.1 1372 2 MR 3I 64 - 90 S 4 26.1 205 444 2.8 MR 2I 50 - 90 S C 4 8.29 665.1 1372 2 MR 3I 63 - 90 S 4 26.1 205 444 2.8 MR 2I 50 - 80 C 4 9.07 72 1240 2.24 MR 3I 63 - 90 S 4 23.6 651, 1372 2 MR 3I 63 - 90 S 4 23.6 651, 1372 2 MR 3I 63 - 90 S 4 23.6 6 196 465 2.5 MR 2I 50 - 80 C 4 9.07 72 1240 3 MR 3I 64 - 90 S 4 23.6 196 465 2.5 MR 2I 50 - 80 C 4 9.07 70.1 1300 1.7 MR 2I 63 - 90 L 6 16.2 227 402 1.5 MR 2I 51 - 90 S 4 7.85 69.3 1314 3.55 MR 2I 80 - 90 S 4 24.5 22.7 402 1.5 MR 2I 41 - 80 C ** 4 7.5 69.3 1314 3.55 MR 2I 80 - 90 S 4 24.5 22.7 402 1.8 MR 2I 51 - 90 S 4 7.85 69.3 1314 3.55 MR 2I 80 - 90 S 4 24.5 22.7 402 1.8 MR 2I 50 - 90 S 4 7.85 79.2 1127 3.35 MR 3I 64 - 80 C 4 22.7 72.9 1225 3.15 MR 3I 63 - 80 C 4 22.7 72.9 1225 3.15 MR 3I 63 - 80 C 4 22.7 72.9 1225 3.15 MR 3I 63 - 90 S 4 21.5 79.2 1127 3.35 MR 3I 64 - 80 C 4 21.5 79.2 1127 3.35 MR 3I 64 - 80 C 4 21.5 79.2 1127 3.35 MR 3I 64 - 80 C 4 21.5 260 350 3.55 MR 2I 50 - 90 S 4 7.85 81.1 1101 3.55 MR 3I 64 - 80 C 4 21.5 260 350 3.55 MR 2I 50 - 90 S 4 5.83 81.8 1091 1.7 MR 3I 50 - 80 C 4 20.8 81.8 1091 1.7 MR 3I 50 - 80 C 4 20.8 81.8 1091 1.7 MR 3I 50 - 80 C 4 20.8 89.9 1013 1.18 MR 2I 50 - 90 L 6 12.7 89.5 MR 2I 63 - 90 L 6 12.7 89.5 MR 2I 63 - 90 L 6 12.7 89.5 MR 2I 63 - 90 L 6 12.7 89.5 MR 2I 63 - 90 L 6 12.7 89.5 MR 2I 63 - 90 L 6 12.7 89.5 MR 2I 63 - 90 L 6 12.7 89.5 MR 2I 63 - 90 S 4 5.65 89.5 MR 2I 64 - 80 C 4 19 89.5 1018 3 MR 2I 64 - 80 C 4 19 89.5 1018 3 MR 2I 64 - 80 C 4 18 8 22 7.35 16551 1.18 MR 3I 155 - 90 S 4 5.11 89.5 MR 2I 65 - 90 S 4 5.11 80.5 MR 2I 65 - 90 S 4 5.11 80.5 MR 2I 65 - 90 S 4 5.50 MR 2I 65 - 90 S 4 5.65 MR 2I 65 - 90 S 4 5.65 MR 2I 65 - 90 S 4 5.65 MR 2I 65 - 90 S 6 4 5.65 MR			l									
58,4 1528 1,8 MR 31 63 - 90 S						· '		171	534	2,36	MR 2I 50 - 80 C 4	9,96
62,4												
68,1 1310 1 MR 3I 50 - 80 C 4 25 188 486 2,65 MR 2I 50 - 80 C 4 9,07 65,1 1372 2 MR 3I 63 - 90 S 4 23,6 65,1 1372 2 1240 2,24 MR 3I 63 - 90 S 4 26,1 188 486 2,55 MR 2I 50 - 80 C 4 9,07 65,1 1372 2 1240 3 MR 3I 64 - 90 S 4 26,1 188 486 3,75 MR 2I 51 - 80 C 4 9,07 72 1240 3 MR 3I 64 - 90 S 4 24,3 6 16,2 70,1 1300 1,7 MR 2I 63 - 80 C 4 24,3 227 402 1,5 MR 2I 51 - 80 C 4 7,85 74,8 1193 1,12 MR 3I 50 - 80 C 4 22,7 74,8 1193 1,6 MR 2I 50 - 80 C 4 22,7 74,8 1193 1,6 MR 2I 50 - 80 C 4 22,7 72,9 1225 2,36 MR 3I 63 - 80 C 4 22,7 72,9 1225 3,15 MR 3I 63 - 80 C 4 21,5 79,2 1127 2,5 MR 3I 63 - 80 C 4 21,5 79,2 1127 2,5 MR 3I 63 - 80 C 4 21,5 79,2 1127 3,35 MR 3I 64 - 80 C 4 23,3 81,1 1101 3,55 MR 3I 64 - 80 C 4 23,3 81,8 1091 1,75 MR 3I 50 - 80 C 4 20,8 81,8 1091 1,7 MR 3I 51 - 80 C 4 20,8 89,9 1013 1,18 MR 2I 51 - 90 L 6 12,7 89,5 1018 2,5 MR 2I 63 - 80 C 4 12,7 89,5 1018 2,5 MR 2I 64 - 80 C 4 20,8 89,9 1013 1,16 MR 2I 51 - 90 L 6 12,7 89,5 1018 3 MR 2I 64 - 80 C 4 12,7 38,5 1018 2,5 MR 3I 50 - 80 C 4 12,7 38,5 MR 3I 51 - 80 C 4 20,8 89,9 1013 1,6 MR 2I 51 - 90 L 6 12,7 89,5 1018 3 MR 2I 64 - 80 C 4 12,7 38,5 1018 2,5 MR 3I 50 - 80 C 4 12,7 38,5 1018 3 MR 2I 64 - 80 C 4 12,7 343 266 2,24 MR 2I 50 - 90 S 4 4,96 89,5 1018 3 MR 2I 64 - 80 C 4 12,7 343 266 2,24 MR 2I 50 - 90 S 4 4,11 80 C ** 4 4,96 89,5 1018 3 MR 2I 64 - 80 C 4 12,7 343 266 2,24 MR 2I 41 - 80 C ** 4 4,96 89,5 1018 3 MR 2I 64 - 80 C 4 12,7 343 266 2,24 MR 2I 40 - 80 C ** 4 4,96 89,5 1018 2,5 MR 2I 64 - 90 L 6 12,7 343 266 2,24 MR 2I 40 - 80 C ** 4 4,96 89,5 1018 3 MR 2I 64 - 80 C 4 12,7 343 266 2,24 MR 2I 40 - 80 C ** 4 4,96 89,5 1018 3 MR 2I 64 - 80 C 4 19 333 274 4,5 MR 2I 50 - 90 S 4 4,11 80 4 4 1		62,4	1431	2,65	MR 3I 64 - 80 C 4	27,2						
66,1 1310 1,4 MR 3l 51 - 80 C 4 25,1 188 486 2,65 MR 2l 50 - 80 C 4 9,07 72 1240 2,24 MR 3l 63 - 90 S 4 23,6 196 465 2,5 MR 2l 50 - 80 C 4 8,29 65,1 1372 2,65 MR 3l 64 - 90 S 4 23,6 196 465 2,5 MR 2l 50 - 80 C 4 4,829 72 1240 3 MR 3l 64 - 90 S 4 23,6 166,1 188 486 3,75 MR 2l 50 - 90 S 4 8,67 67,9 1343 1,7 MR 2l 63 - 80 C 4 24,3 227 402 1,5 MR 2l 51 - 90 S 4 8,67 69,3 1314 3,55 MR 2l 80 - 90 S 4 24,3 227 402 1,8 MR 2l 41 - 80 C ** 4 7,5 74,8 1193 1,12 MR 3l 51 - 80 C 4 22,7 217 421 3 MR 2l 50 - 90 S 4 4,7,17 72,9 1225 MR 3l 63 - 80 C 4 21,5 42,1 267 341 1,7 </th <th></th> <th></th> <th></th> <th>· ·</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				· ·								
65,1 1372 2,24 MR 31 63 - 90 S 4 26,1 205 4444 2,8 MR 21 50 - 80 C 4 3,67			l									
65,1 1372 2,65 MR 31 64 - 90 S											MR 2I 50 - 80 C 4	
72												
70,1 1300												
74,8 1193 1,12 MR 3I 50 - 80 C 4 22,7 74,8 1193 1,6 MR 3I 51 - 80 C 4 22,7 72,9 1225 2,36 MR 3I 63 - 80 C 4 21 79,2 1127 2,5 MR 3I 63 - 80 C 4 21 79,2 1127 2,5 MR 3I 64 - 80 C 4 21 79,2 1127 3,35 MR 3I 64 - 80 C 4 21 26 34 3,55 MR 3I 50 - 80 C 4 21 79,2 1127 3,35 MR 3I 64 - 80 C 4 21 26 34 3,55 MR 3I 50 - 80 C 4 21 260 350 3,55 MR 2I 50 - 90 S 4 6,49 79,2 1127 3,35 MR 3I 51 - 80 C 4 20,8 81,8 1091 1,7 MR 3I 51 - 80 C 4 20,8 81,8 1091 1,7 MR 3I 51 - 80 C 4 20,8 89,9 1013 1,18 MR 2I 50 - 90 L * 6 12,2 89,9 1013 1,18 MR 2I 50 - 90 L * 6 12,2 89,5 1018 2,5 MR 2I 63 - 90 L * 6 12,2 89,5 1018 2,5 MR 2I 63 - 80 C 4 19 89,5 1018 3 MR 2I 64 - 80 C 4 19 89,5 1018 3 MR 2I 64 - 80 C 4 19 89,5 1018 3 MR 2I 64 - 80 C 4 19 89,5 1018 3 MR 2I 64 - 80 C 4 19 89,5 1018 3 MR 2I 64 - 80 C 4 19 89,5 1018 3 MR 2I 64 - 80 C 4 19 89,5 1018 3 MR 2I 64 - 80 C 4 19 89,5 1018 3 MR 2I 64 - 80 C 4 19 89,5 1018 3 MR 2I 64 - 80 C 4 19 89,5 1018 3 MR 2I 64 - 80 C 4 19 89,6 94,6 943 1,4 MR 3I 51 - 80 C 4 18 89,6 94,6 943 1,4 MR 3I 51 - 80 C 4 18 89,6 94,6 943 2 MR 3I 51 - 80 C 4 18 89,6 70 1018 3 MR 2I 64 - 80 C 4 18 89,6 1018 3 MR 2I 64 - 80 C 4 18 89,6 1018 3 MR 2I 64 - 80 C 4 18 89,6 1018 3 MR 2I 64 - 80 C 4 18 89,6 1018 3 MR 2I 64 - 80 C 4 18 89,6 1018 3 MR 2I 64 - 80 C 4 18 89,6 1018 3 MR 2I 64 - 80 C 4 18 89,6 1018 3 MR 2I 64 - 80 C 4 18 80 C 4 18 80,6 1018 3 MR 2I 64 - 80 C 4 18 80,6 1018 3 MR 2I 64 - 80 C 4 18 80,6 1018 3 MR 2I 64 - 80 C 4 18 80,6 1018 3 MR 2I 64 - 80 C 4 18 80,6 1018 3 MR 2I 64 - 80 C 4 18 80,6 1018 3 MR 2I 64 - 80 C 4 18 80,6 1018 3 MR 2I 64 - 80 C 4 18 80,6 1018 3 MR 2I 64 - 80 C 4 18 80,6 1018 3 MR 2I 64 - 80 C 4 18 80,6 1018 3 MR 2I 64 - 80 C 4 18 80 C 4 18 80,6 1018 3 MR 2I 64 - 80 C 4 18 80,6 1018 3 MR 2I 64 - 80 C 4 18						24,3					MR 2 40 - 80 C ** 4 MR 2 41 - 80 C ** 4	
74,8			l					217	421	3	MR 2I 50 - 90 S 4	7,85
72,9 1225 2,36 MR 3I 63 - 80 C 4 23,3 79,2 1127 2,5 MR 3I 63 - 80 C 4 21,5 79,2 1127 3,35 MR 3I 64 - 80 C 4 21,5 79,2 1127 3,35 MR 3I 64 - 80 C 4 21,5 79,2 1127 3,35 MR 3I 64 - 80 C 4 21,5 81,8 1091 1,7 MR 3I 51 - 80 C 4 20,8 81,8 1091 1,7 MR 2I 50 - 90 S 4 5,65 89,9 1013 1,18 MR 2I 50 - 90 L * 6 12,2 89,9 1013 1,6 MR 2I 51 - 90 L * 6 12,2 89,5 1018 2,5 MR 2I 63 - 80 C 4 19 89,6 943 1,4 MR 3I 51 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18												
No.		72,9	1225	2,36	MR 3I 63 - 80 C 4	23,3					MR 21 50 - 80 C 4 MR 21 50 - 90 S 4	
72,9 1225 3,15 MR 3I 64 - 80 C 4 23,3 MR 3I 64 - 80 C 4 21,5 MR 3I 64 - 90 S 4 21,5 MR 3I 64 - 90 S 4 21,5 MR 3I 64 - 90 S 4 21,5 MR 3I 50 - 80 C 4 20,8 81,8 1091 1,7 MR 3I 51 - 80 C 4 20,8 89,9 1013 1,18 MR 2I 50 - 90 L * 6 12,2 89,9 1013 1,6 MR 2I 51 - 90 L * 6 12,2 89,5 1018 2,36 MR 2I 63 - 90 L 6 12,7 89,5 1018 2,5 MR 2I 64 - 90 L 6 12,7 89,5 1018 3 MR 2I 64 - 90 L 6 12,7 89,5 1018 3 MR 2I 64 - 80 C 4 19 94,6 943 1,4 MR 3I 50 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18			l		MR 31 63 - 80 C 4 MR 31 63 - 90 S 4			267	341	1,7	MR 2I 40 - 80 C ** 4	6,36
79,2 1127 3,35 MR 31 64 - 90 S 4 21,5 81,8 1091 1,25 MR 31 50 - 80 C 4 20,8 81,8 1091 1,7 MR 31 51 - 80 C 4 20,8 89,9 1013 1,18 MR 21 50 - 90 L * 6 12,2 89,5 1018 2,5 MR 21 63 - 90 L 6 12,7 89,5 1018 3 MR 21 64 - 80 C 4 19 94,6 943 2 MR 31 51 - 80 C 4 18 94,6 943 2 MR 31 51 - 80 C 4 18 94,6 943 2 MR 31 51 - 80 C 4 18 94,6 943 2 MR 31 51 - 80 C 4 18 12 10 1 10 10 10 10 10 10 10 10 10 10 10 1		72,9	1225	3,15	MR 3I 64 - 80 C 4	23,3						
81,8 1091 1,25 MR 3I 50 - 80 C			l								MR 2I 50 - 90 S 4	
89,9 1013 1,18 MR 2I 50 - 90 L * 6 12,2 89,5 1018 2,5 MR 2I 63 - 90 L 6 12,7 89,5 1018 3 MR 2I 64 - 90 L 6 12,7 89,5 1018 3 MR 2I 64 - 80 C 4 19 415 219 4,75 MR 2I 50 - 90 S 4 5,65 MR 2I 40 - 80 C ** 4 4,96 MR 2I 50 - 90 S 4 5,11 4,18 MR 3I 50 - 80 C 4 18 94,6 943 2 MR 3I 51 - 80 C 4 18		81,8	1091	1,25	MR 3I 50 - 80 C 4	20,8						
89,9 1013 1,6 MR 2I 51 - 90 L * 6 12,7 89,5 1018 2,5 MR 2I 63 - 90 L 6 12,7 89,5 1018 3 MR 2I 64 - 90 L 6 12,7 89,5 1018 3 MR 2I 64 - 80 C 4 19 415 219 4,75 MR 2I 40 - 80 C ** 4 4,96 MR 2I 50 - 90 S 4 5,11 4,1 94,6 94,6 94,6 94,8 2 MR 3I 51 - 80 C 4 18 MR 3I 51 - 80 C 4 18					MR 3I 51 - 80 C 4							
89,5 86,7 1018 2,5 MR 2I 63 - 80 C 4 19 19 47,5 MR 2I 64 - 90 L 6 12,7 89,5 1018 3 MR 2I 64 - 80 C 4 19 415 219 4,75 MR 2I 50 - 90 S 4 5,11 8		89,9	1013	1,6	MR 2I 51 - 90 L * 6	12,2		343	266		MR 2I 40 - 80 C ** 4	4,96
86,7 89,5 1018 3 MR 2I 64 - 90 L 6 MR 2I 64 - 80 C 4 19 415 219 4,75 MR 2I 40 - 80 C ** 4 3,96 MR 2I 50 - 90 S 4 4,1 94,6 94,6 94,8 94,8 2 MR 3I 51 - 80 C 4 18 18 94,6 94,6 94,6 94,6 94,6 94,6 94,6 94,6												
94,6 94,6 943 2 MR 3I 50 - 80 C 4 18 2 7,35 16551 1,18 MR 3I 125 - 100 LA 6 150		86,7	1051	3	MR 2I 64 - 90 L 6	12,7						
94,6 943 2 MR 3I 51 - 80 C 4 18 2 7,35 16551 1.18 MR 3I 125 - 100 LA 6 150												
							2	7,35	16551	1,18	MR 3I 125 - 100 LA 6	150
								9,31	13073	1	MR 3I 101 - 90 LC 6	118

¹⁾ Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3.
* Mounting position **B5R** (see table ch. 2b).
** Mounting position B5A (see table ch. 2b).

Property											Щ <u>г</u>
The color	P ₁	n ₂	M_2	<i>f</i> s	Gear reducer - Motor	j	\mathbf{P}_1	n ₂	M ₂	fs	Gear reducer - Motor
2		rpm	lb in					1	lb in		
2	1)				2)		1)				2)
9.39 12902 2		9,39	12962	1,7	·	117		48,8	2494	1,6	·
11,5 10591		,		1				1 '	l		
11,5 10694 1,5 MR 31 101 - 100 LA 6 95.7 55.2 2205 2.65 MR 31 80 - 90 L 4 30.6 11,8 10233 0.95 MR 31 100 - 90 L 6 6 93.7 59.9 20.33 1.4 MR 31 63 - 90 L 6 4 22.1 11,7 10370 2.2 MR 31 125 - 100 LA 6 93.7 59.9 20.33 1.4 MR 31 63 - 90 L 6 4 22.1 11,7 10370 3 MR 31 100 - 90 L 6 6 93.7 59.9 20.33 1.4 MR 31 63 - 90 L 6 4 22.1 11,8 8624 1.32 MR 31 100 - 100 LA 6 93.7 59.5 20.45 2.8 MR 31 80 - 90 L 6 6 17.9 11,1 8624 1.32 MR 31 100 - 90 L 6 6 77.9 59.5 20.45 2.8 MR 31 80 - 90 L 6 6 17.9 11,1 8624 1.32 MR 31 100 - 90 L 6 77.9 59.5 20.45 2.8 MR 31 80 - 90 L 4 22.1 11,1 8624 1.8 MR 31 101 - 90 L 6 6 77.9 68.1 1737 1 MR 31 63 - 90 L 4 26.1 11,1 8624 1.8 MR 31 101 - 90 L 6 6 77.9 68.1 1737 1 MR 31 63 - 90 L 4 26.1 11,4 8624 1.8 MR 31 101 - 90 L 6 6 77.9 68.1 1737 1 MR 31 63 - 90 L 4 26.1 11,4 8624 1.8 MR 31 101 - 90 L 6 6 77.9 68.1 1737 1 MR 31 63 - 90 L 4 26.1 11,4 8624 1.8 MR 31 101 - 90 L 6 6 77.9 68.1 1737 1 MR 31 63 - 90 L 4 26.1 11,4 8624 1.8 MR 31 101 - 90 L 6 6 77.9 68.1 1737 1 MR 31 63 - 90 L 4 26.1 11,4 8624 1.8 MR 31 101 - 90 L 6 6 77.9 68.1 1737 1 MR 31 63 - 90 L 4 26.1 11,4 8625 1.25 MR 31 100 - 90 L 4 6 67.4 72 1691 1.7 MR 31 63 - 90 L 4 26.1 11,4 8626 1.8 MR 31 101 - 90 L 4 6 67.5 72.5 1690 3.35 MR 31 80 - 90 L 4 26.1 11,5 80.7 80.7 1.7 MR 31 100 - 90 L 4 6 67.5 72.5 1690 3.35 MR 31 80 - 90 L 4 26.1 11,6 80.7								1 '			
11,4 10644 1,5 MR 31101 - 90 LC 6 96.2 55.2 2205 8.55 MR 31 81 - 90 L 4 80.6 11,7 10370 2,24 MR 31125 - 100 LA 6 83.7 68.4 2084 13.2 MR 31 63 - 90 LC 6 18.4 11,7 10370 3 MR 31 105 - 100 LA 6 83.7 68.4 2084 13.2 MR 31 63 - 90 LC 6 18.4 14,1 8624 1.32 MR 31 100 - 100 LA 6 77.9 58.4 2084 17.7 MR 31 64 - 90 LC 6 18.5 14,1 8624 1.32 MR 31 100 - 90 LC 6 67.5 61.5 2020 2.65 MR 2 80 - 90 LC 6 18.5 14,4 8459 1.25 MR 31 100 - 90 LC 4 118 65.1 1871 1.5 MR 31 63 - 90 LC 4 28.1 14,4 8459 1.25 MR 31 100 - 90 LC 4 118 65.1 1871 1.5 MR 31 63 - 90 LC 4 28.1 14,8 8228 2.8 MR 31 100 - 90 LC 4 67.4 65.1 1871 2.2 MR 31 60 - 90 LC 4 28.6 14,8 8228 2.8 MR 31 125 - 100 LA 6 67.4 65.1 1871 2.2 MR 31 63 - 90 L 4 28.6 16,3 7472 1.06 MR 31 101 - 90 L 4 90.2 67.4 65.1 1871 2.4 MR 31 63 - 90 L 4 28.6 17,7 6887 2.24 MR 31 100 - 90 L 4 90.2 67.4 65.1 1871 2.4 MR 31 63 - 90 L 4 28.6 17,7 6887 2.24 MR 31 100 - 90 L 4 90.2 67.4 65.1 1871 2.4 MR 31 63 - 90 L 4 28.6 18,6 6883 1.7 MR 31 100 - 90 L 4 90.2 67.4 65.1 1871 2.4 MR 31 63 - 90 L 4 28.6 19,7 6887 2.24 MR 31 100 - 90 L 4 90.2 67.4 65.1 1871 2.4 MR 31 63 - 90 L 4 28.6 17,7 6887 2.24 MR 31 100 - 90 L 4 90.2 67.4 65.1 1871 2.4 MR 31 63 - 90 L 4 28.6 18,7 6887 2.24 MR 31 100 - 90 L 4 90.2 67.4 65.1 1871 2.4 MR 31 63 - 90 L 4 28.6 19,8 6882 1.3 MR 31 100 - 90 L 4 67.4 65.1 1871 2.4 MR 31 63 - 90 L 4 28.6 19,8 6882 1.3 MR 31 100 - 90 L 4 67.5 67.5 18.7 3.3 MR 31 36 - 90 L 4 28.6 19,8 6882 1.3 MR 31 100 - 90 L 6 67.5 67.5 18.7 18.8 18.8 18.9 18.8 18.9 18.8 18.9 18.8 18.9 18.8 18.9 18.8 18.9 18.8 18.8 18.9 18.8 18.9 18.8 18.8 18.9 18.8 1				1 '							1 '
11,7 10370 2,24 MR 31 125 - 100 LA 6 93,7 59,9 2033 19,1 MR 31 63 - 90 L 4 29,1		11,4	10644	1,5	MR 3I 101 - 90 LC 6	96,2		55,2	2205	3,55	MR 3I 81 - 90 L 4 30,8
14.1				. ,							
14,1						· ·		1 '			
14,1		14,1	8624	1,32	MR 3I 100 - 90 LC 6	77,9		59,5	2045	2,8	MR 3I 80 - 100 LA 6 18,5
14.4 84.9				1 '				1 '			
14.8 8228 2.8 MR 31 125 - 100 LA 6 74.4 72 69.1 69.1 69.1 74.4 72 69.1 69.1 74.4 72 69.1 74.4 72 69.1 74.4 72 69.1 74.4 72 69.1 74.4 72 69.1 74.4 72 69.1 74.4 72 69.1 74.4 72 69.1 74.4 72 69.1 74.4 72 72 73 73.2 74.5 74.5 74.4				1 '					l		1 '
16,3 7472 1,06 MR 3I 81 - 90 LC 6 67,5 72,5 1860 3,35 MR 3I 80 - 90 L 4 26,1 77,7 6887 1,2 6 8,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6		14,8	8228	2,8	MR 3I 125 - 100 LA 6	74,4		65,1	1871	2	MR 3I 64 - 90 L 4 26,1
17,7 6887 1.7 MR 31 100 - 90 L				1 '		'		65	1871	3	MR 3I 80 - 90 L 4 26,1
18 6768 3,55 MR 31 125 100 LA 6 6 61.2		17,7	6887	1,7	MR 3I 100 - 90 L 4	96,2			l		MR 2l 63 - 90 L * 4 24,3
20,7 6887 1,32 MR 31 81 - 100 LA 6 53,2 79,2 1537 2,5 MR 31 63 - 90 L 4 21,5								1 '			
19,3 6322 1,8 MR 3 100 - 100 LA 6 57,1 75,9 1637 3,35 MR 2 80 - 100 LA 6 14,5				1 '				79,2	1537	1,8	MR 3I 63 - 90 L 4 21,5
19,3 6322 2,36 MR 31 101 - 90 LC 6 57,1 75,9 1637 3,35 MR 21 80 - 90 LC 6 14,5		19,3	6322	1,8	MR 3I 100 - 100 LA 6	57,1		75,9		3,35	MR 2I 80 - 100 LA 6 14,5
19,9 6118 3,75 MR 31 125 -100 LA 6 55,3 MR 31 125 -100 LA 6 55,3 MR 31 125 -100 LA 6 6 55,3 MR 31 125 -100 LA 6 6 52,9 89,5 1389 2,24 MR 21 63 - 90 L * 4 19 20,1 21,8 5880 2,12 MR 31 100 - 90 L 4 77,9 94,6 1286 1,06 MR 21 63 - 90 L * 4 18 25,2 4835 1,6 MR 31 81 - 90 L 4 67,5 92,5 1316 2,12 MR 31 63 - 90 L 4 18,2 25,2 4835 1,6 MR 31 81 - 90 L 4 67,5 103 1183 2,36 MR 31 63 - 90 L 4 18,2 25,5 4766 2,5 MR 31 100 - 90 L 4 67,5 103 1183 2,36 MR 31 64 - 90 L 4 16,5 23,4 5211 3 MR 31 101 - 100 LA 6 47,1 100 1237 2,12 MR 31 64 - 90 L 4 16,9 27,7 4400 1,32 MR 31 101 - 100 LA 6 47,1 100 1237 2,12 MR 31 64 - 90 L 4 16,9 22,7 4664 3,35 MR 31 100 - 90 L 4 63,8 105 1164 1,12 MR 31 50 - 90 L * 4 16,9 28,9 4213 1,32 MR 31 101 - 90 L 4 63,8 114 1088 1,06 MR 21 63 - 90 L * 4 16,9 28,9 4213 1,32 MR 31 80 - 90 L 4 58,8 114 1088 1,06 MR 21 63 - 90 L * 4 16,9 28,9 4213 1,7 MR 31 80 - 90 L 4 58,8 114 1088 1,06 MR 21 63 - 90 L * 4 16,9 28,9 4213 1,7 MR 31 81 - 90 L 4 58,8 114 1088 1,06 MR 21 51 - 90 L * 4 16,2 28,9 4213 1,7 MR 31 81 - 90 L 4 58,8 114 1088 1,06 MR 21 51 - 90 L * 4 16,2 28,9 4213 1,7 MR 31 81 - 90 L 4 58,8 114 1088 1,06 MR 21 51 - 90 L * 4 16,2 28,9 4213 1,7 MR 31 81 - 90 L 4 58,8 114 1088 1,06 MR 21 51 - 90 L * 4 16,2 28,9 4213 1,7 MR 31 81 - 90 L 4 58,8 114 1088 1,06 MR 21 51 - 90 L * 4 16,2 28,9 4213 1,7 MR 31 81 - 90 L 4 58,8 114 1088 1,06 MR 21 51 - 90 L * 4 16,2 28,9 4213 1,7 MR 31 81 - 90 L 4 58,8 114 1088 1,06 MR 21 51 - 90 L * 4 16,2 28,9 4213 1,7 MR 31 81 - 90 L 4 58,8 114 1088 1,06 MR 21 51 - 90 L * 4 16,2 28,9 4213 1,7 MR 31 81 - 90 L 4 58,8 114 1088 1,06 MR 21 51 - 90 L * 4 16,2 28,9 4213 1,7 MR 31 81 - 90 L 4 4 6,9 110 1130 2,65 MR 21 64 - 90 L * 4 16,2 28,9 110 1130 2,65 MR 21 64 - 90 L * 4 16,2 28,9 110 1130 2,65 MR 21 64 - 90 L * 4 16,2 28,9 110 1130 2,65 MR 21 64 - 90 L * 4 16,2 28,9 110 1130 2,65 MR 21 64 - 90 L * 4 16,2 28,9 110 1130 2,65 MR 21 64 - 90 L * 4 16,2 28,9 110 1130 2,65 MR 21 64 - 90 L * 4 16,2 28,9 110 1130 2,65 MR 21 64 - 90 L * 4 16,2 28,9 110 1130 2,65 MR 21 64 - 90 L * 4 16,2 28,9 110		19,3	6322	2,36	MR 3I 101 - 100 LA 6	57,1		75,9	1637	3,35	MR 2I 80 - 90 LC 6 14,5
20,8 5852 1 328 MR 31 80 - 90 LC 6 52,9 89,5 1389 2,24 MR 21 64 - 90 L * 4 19 20,1 89,5 1389 2,24 MR 21 64 - 90 L * 4 19 20,1 81,8 MR 21 80 - 90 L 4 20,1 81,8 81,5 146 3,55 MR 21 80 - 90 L 4 20,1 81,8 81,5 146 3,55 MR 21 80 - 90 L 4 20,1 81,8 81,5 146 146 14,1 14,1 14,1 14,1 14,1 14,1 1		,		1 '				86,1	1442	1,6	MR 2I 63 - 100 LA 6 12,8
20,8 5850 2,12 MR 31 01 - 90 L 4 77,9 94,6 1286 1,06 MR 31 51 - 90 L 4 18,4 18 25,2 4835 1,6 MR 31 101 - 100 LA 6 43,1 92,5 1316 2,12 MR 31 100 - 100 LA 6 45,1 103 1183 2,36 MR 31 101 - 100 LA 6 45,8 MR 31 101 - 100 LA 6 45,9 41,6 MR 31 80 - 90 L 4 16,5 MR 31 80 - 90 L 4 16,3 MR 31 101 - 100 LA 6 10,5 MR 31 100		20,8	5852	1	MR 3I 80 - 90 LC 6	52,9			l		
25,2 4835 1,25 MR 3I 80 - 90 L 4 67,5 94,6 1286 1,5 MR 3I 51 - 90 L * 4 18,4 25,2 4835 1,6 MR 3I 100 - 100 LA 6 43,1 25,4 5077 2,36 MR 3I 100 - 90 LC 6 45,9 27,7 4400 1,32 MR 3I 80 - 90 L C 6 39,8 27,7 4400 1,32 MR 3I 80 - 90 L C 6 39,8 27,7 4400 1,8 MR 3I 100 - 90 L C 6 39,8 26,7 4564 2,5 MR 3I 100 - 90 L C 6 39,8 26,7 4564 2,5 MR 3I 100 - 90 L C 6 34,8 26,7 4564 3,35 MR 3I 101 - 90 L C 6 34,8 31,6 3855 1,06 MR 3I 64 - 90 L C 6 34,8 31,1 3786 1,5 MR 3I 80 - 90 L C 6 34,8 32,1 3786 1,5 MR 3I 80 - 90 L C 6 34,8 32,1 3786 1,5 MR 3I 80 - 90 L C 6 34,8 32,1 3786 1,5 MR 3I 80 - 90 L C 6 34,8 32,1 3786 1,5 MR 3I 80 - 90 L C 6 34,8 32,1 3786 1,5 MR 3I 80 - 90 L C 6 34,8 32,1 3786 1,5 MR 3I 80 - 90 L C 6 34,8 32,1 3786 1,5 MR 3I 80 - 90 L C 6 34,8 32,1 3786 1,5 MR 3I 80 - 90 L C 6 34,8 32,1 3786 1,5 MR 3I 80 - 90 L C 6 34,8 32,1 3786 1,5 MR 3I 80 - 90 L C 6 34,8 32,1 3786 1,5 MR 3I 80 - 90 L C 6 34,8 32,1 3786 1,5 MR 3I 80 - 90 L C 6 34,8 32,3 3355 1,7 MR 3I 81 - 90 L C 6 35,8 32,3 3355 1,7 MR 3I 81 - 90 L C 6 34,8 32,3 3355 1,7 MR 3I 80 - 90 L C 6 34,8 34,4 3539 3,35 MR 3I 100 - 90 L C 6 32 34,4 3539 3,35 MR 3I 100 - 90 L C 6 32 34,4 3539 3,35 MR 3I 100 - 90 L C 6 32 34,4 3539 3,35 MR 3I 100 - 90 L C 6 32 34,4 3539 3,35 MR 3I 100 - 90 L C 6 32 34,4 3539 3,35 MR 3I 100 - 90 L C 6 32 34,4 3539 3,35 MR 3I 100 - 90 L C 6 32 34,4 3539 3,35 MR 3I 100 - 90 L C 6 32 34,4 3539 3,35 MR 3I 100 - 90 L C 6 32 34,4 3539 3,35 MR 3I 100 - 90 L C 6 32 34,4 3539 3,35 MR 3I 100 - 90 L C 6 32 34,4 3539 3,35 MR 3I 100 - 90 L C 6 32 34,4 3539 3,35 MR 3I 100 - 90 L C 6 32 34,4 3539 3,35 MR 3I 100 - 90 L C 6 32 34,4 3539 3,35 MR 3I 1		21,8	5580	2,12	MR 3I 100 - 90 L 4	77,9		84,8	1466	3,55	MR 2I 80 - 90 L 4 20,1
25,2								94,6	1286	1,5	MR 3I 51 - 90 L * 4 18
25,5		25,2	4835	1,6	MR 3I 81 - 90 L 4	67,5		1 '	l		
23,4 5211 3 MR 3I 101 - 100 LA 6 47,1 100 1237 2,12 MR 2I 63 - 90 L * 4 16,9 100 1237 2,65 MR 2I 64 - 90 L * 4 16,9 100 1237 2,65 MR 2I 64 - 90 L * 4 16,9 100 1237 2,65 MR 2I 64 - 90 L * 4 16,9 100 1237 2,65 MR 2I 64 - 90 L * 4 16,9 100 1237 2,65 MR 2I 64 - 90 L * 4 16,9 100 1237 2,65 MR 2I 64 - 90 L * 4 16,9 100 1237 2,65 MR 2I 64 - 90 L * 4 16,9 100 1237 2,65 MR 2I 64 - 90 L * 4 16,9 100 1237 2,65 MR 2I 64 - 90 L * 4 16,9 100 1237 2,65 MR 2I 64 - 90 L * 4 16,9 105 1164 1,6 MR 3I 50 - 90 L * 4 16,3 105 1164 1,6 MR 3I 51 - 90 L * 4 16,3 114 1088 1,06 MR 2I 50 - 90 L * 4 14,9 114 1087 1 MR 2I 50 - 90 L * 4 14,9 114 1088 1,4 MR 2I 50 - 90 L * 4 14,9 14,0 14		24	5077	2,36	MR 3I 100 - 90 LC 6	45,9					
27,7								100	1237	2,12	MR 2I 63 - 90 L * 4 16,9
26,7 4564 3,35 MR 3I 101 - 90 L		27,7	4400	1,8	MR 3I 81 - 90 LC 6	39,8					MR 3I 50 - 90 L * 4 16,3
31,6 3855											
32,1 3786 1,5 MR 3I 80 - 90 L 4 58,8 32,1 3786 2 MR 3I 81 - 90 L 4 58,8 32 3801 3,15 MR 3I 100 - 90 L 4 53,1 32,6 3736 0,95 MR 3I 64 - 90 L 4 52,2 36,3 3355 1,12 MR 3I 80 - 90 L 4 46,9 36,3 3355 2,36 MR 3I 81 - 90 L 4 46,9 36,3 34,4 3539 3,35 MR 3I 100 - 90 L 4 46,9 34,4 3539 3,35 MR 3I 100 - 90 L 4 42,9 139 894 1,77 MR 2I 51 - 90 L 4 12,2								114	1087	1	MR 2I 50 - 90 L * 4 14,9
32,1 3786 2 MR 3I 81 - 90 L 4 58 32 3801 3,15 MR 3I 100 - 90 L 4 53,1 32,6 3736 0,95 MR 3I 64 - 90 L 4 52,2 36,3 3355 1,12 MR 3I 64 - 90 L 4 46,9 36,3 3355 2,36 MR 3I 81 - 90 L 4 46,9 36,3 3355 2,36 MR 3I 81 - 90 L 4 46,9 36,3 34,4 3539 3,35 MR 3I 100 - 90 L 4 42,9 139 894 1,7 MR 2I 51 - 90 L 4 12,2 139 894 1,7 MR 2I 51 - 90 L 4		32,1	3786	1,5	MR 3I 80 - 90 L 4	52,9		112	1111	2,5	MR 2I 63 - 90 L * 4 15,2
32 3801 3,15 MR 3I 100 - 90 L 4 53,1 32,6 3736 0,95 MR 3I 64 - 90 L 4 52,2 36,3 3355 1,12 MR 3I 64 - 90 L 4 46,9 36,3 3355 2,36 MR 3I 80 - 90 L 4 46,9 36,3 3355 2,36 MR 3I 81 - 90 L 4 46,9 35,3 34,4 3539 3,35 MR 3I 100 - 100 LA 6 31,2 39,6 3073 1,18 MR 3I 64 - 90 L 4 42,9		32,1	3786	2	MR 3I 81 - 90 L 4	52,9		110	1130	2,65	MR 2I 64 - 100 LA 6 10
32,6 3736 0,95 MR 3I 64 - 90 L 4 52,2 36,3 3355 1,12 MR 3I 64 - 90 L 4 46,9 36,3 3355 2,36 MR 3I 80 - 90 L 4 46,9 36,3 3355 2,36 MR 3I 81 - 90 L 4 46,9 35,3 34,4 3539 3,35 MR 3I 100 - 100 LA 6 32 39,6 3073 1,18 MR 3I 64 - 90 L 4 42,9											I "
36,3 3355 1,7 MR 3I 64 - 90 L 4 46,9 14,2 140 886 1,4 MR 2I 50 - 90 L 4 14,2 14,2 140 886 1,4 MR 2I 50 - 90 L 6 7,85 140 886 1,4 MR 2I 51 - 90 L 4 12,2 140 886 2 MR 2I 51 - 90 L 6 7,85 140 886 2 MR 2I 51 - 90 L 6 7,85 140 886 2 MR 2I 51 - 90 L 6 7,85 140 886 2 MR 2I 51 - 90 L 6 7,85 140 886 1,4 MR 2I 51 - 90 L 6 7,85 140 886 1,4 MR 2I 51 - 90 L 6 7,85 140 886 1,4 MR 2I 51 - 90 L 6 7,85 140 886 1,4 MR 2I 51 - 90 L 6 7,85 140 886 1,4 MR 2I 51 - 90 L 6 7,85 140 886 1,4 MR 2I 51 - 90 L 6 7,85 140 886 1,4 MR 2I 51 - 90 L 6 7,85 140 886 1,4 MR 2I 51 - 90 L 7,85								127	979	1,7	MR 2I 51 - 90 LC 6 8,6
36,3 3355 1,7 MR 3I 80 - 90 L 4 46,9 36,3 3355 2,36 MR 3I 100 - 100 LA 6 31,2 34,4 3539 3,35 MR 3I 100 - 90 LC 6 32 39,6 3073 1,18 MR 3I 64 - 90 L 4 42,9 1139 894 1,7 MR 2I 51 - 90 L 4 12,2 MR 2I 51 - 90 L											, <u></u>
35,3 3449 3,35 MR 3I 100 - 100 LA 6 31,2 140 886 2 MR 2I 51 - 90 LC 6 7,85 39,6 3073 1,18 MR 3I 64 - 90 L 4 42,9 139 894 1,7 MR 2I 51 - 90 L * 4 12,2		36,3									MR 2I 50 - 90 LC 6 7,8
39,6 3073 1,18 MR 3I 64 - 90 L 4 42,9 1 139 894 1,7 MR 2I 51 - 90 L * 4 12,2		35,3	3449	3,35	MR 3I 100 - 100 LA 6	31,2					
40.2 3030 1.9 MR 3 80 - 100 A 6 27.4		39,6	3073	1,18	MR 3I 64 - 90 L 4	42,9					l l
40,2 3030 2,5 MR 3I 81 - 100 LA 6 27,4 1 134 928 3,35 MR 2I 64 - 90 L 4 12,7		40,2 40,2	3030 3030	1,9 2,5	MR 3I 80 - 100 LA 6 MR 3I 81 - 100 LA 6	27,4 27,4		134 134	928 928	2,65 3,35	MR 2I 63 - 90 L 4 12,7 MR 2I 64 - 90 L 4 12,7
37,1 3285 3,55 MR 3l 100 - 90 L		37,1	3285	3,55	MR 3I 100 - 90 L 4	45,9		155	804	1,5	MR 2I 50 - 90 L * 4 11
44,1 2760 1,06 MR 3I 63 - 90 L		44,1				38,5			804	2	
42,7 2847 2 MR 3I 80 - 90 L 4 39,8 150 826 3,15 MR 2I 63 - 90 L 4 11,3 42,7 2847 2,8 MR 3I 81 - 90 L 4 39,8 150 826 4 MR 2I 64 - 90 L 4 11,3		42,7		2		39,8		150	826	3,15	MR 2I 63 - 90 L 4 11,3
44,3 2750 4,25 MR 3I 100 - 90 L 4 38,4 181 688 1 MR 2I 41 - 80 D ** 4 9,41		44,3	2750	4,25	MR 3I 100 - 90 L 4	38,4		181	688	1	MR 2I 41 - 80 D ** 4 9,4
48,8 2494 1,18 MR 3I 63 - 90 L 4 34,8 171 728 1,7 MR 2I 50 - 90 L * 4 9,96		48,8	2494	1,18	MR 3I 63 - 90 L 4	34,8		171	728	1,7	MR 2I 50 - 90 L * 4 9,9

¹⁾ Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3. * Mounting position **B5R** (see table ch. 2b).

P ₁	n ₂	M ₂	<i>f</i> s	Gear reducer - Motor	i	P ₁	n ₂	M ₂	<i>f</i> s	Gear reducer - Motor	i
hp	rpm	lb in				hp	rpm	lb in			
1)				2)		1)				2)	
2	176 171	704 728	1,6 2,36	MR 2I 50 - 90 L 4 MR 2I 51 - 90 L * 4	9,64 9,96	2,5	29,3 32	5125 4687	3,15 3,35	MR 3I 101 - 90 LB 4 MR 3I 101 - 90 LB 4	58 53,1
	176 167	704 742	2,12 3,55	MR 2I 51 - 90 L 4 MR 2I 63 - 90 L 4	9,64 10,2		36,3	4138	1,4	MR 3I 80 - 90 LB 4	46,9
	201	618	1,18	MR 2I 41 - 80 D** 4	8,46		36,3 35,3	4138 4254	1,9 2,65	MR 3I 81 - 90 LB 4 MR 3I 100 - 100 LB 6	46,9 31,2
	188 205	663 606	1,9 2,12	MR 2I 50 - 90 L * 4 MR 2I 50 - 90 L * 4	9,07 8,29		40,2 40,2	3737 3737	1,5 2	MR 3I 80 - 100 LB 6 MR 3I 81 - 100 LB 6	27,4 27,4
	196 188	633 663	1,9 2,65	MR 2I 50 - 90 L 4 MR 2I 51 - 90 L * 4	8,67 9,07		37,1	4052 3404	2,8	MR 3I 100 - 90 LB 4 MR 3I 64 - 90 LB 4	45,9
	205 196	606 633	3 2,5	MR 2I 51 - 90 L * 4 MR 2I 51 - 90 L 4	8,29 8,67		44,1 42,7	3512	1,12	MR 3I 80 - 90 LB 4	38,5 39,8
	185 204	671 610	4 4,25	MR 2I 63 - 90 L 4 MR 2I 63 - 90 L 4	9,18 8,34		42,7 44,3	3512 3392	2,24 3,35	MR 3I 81 - 90 LB 4 MR 3I 100 - 90 LB 4	39,8 38,4
	227 217	548 573	1,32 2,12	MR 2I 41 - 80 D ** 4 MR 2I 50 - 90 L 4	7,5 7,85		48,8 48,8	3076 3076	0,95 1,25	MR 3I 63 - 90 LB 4 MR 3I 64 - 90 LB 4	34,8 34,8
	217	573	3	MR 2I 51 - 90 L 4	7,85		48,9 48,9	3069 3069	1,9 2,36	MR 3I 80 - 90 LB 4 MR 3I 81 - 90 LB 4	34,8 34,8
	238 238	522 522	2,36 3,35	MR 2I 50 - 90 L 4 MR 2I 51 - 90 L 4	7,14 7,14		48,6	3088 2796	3,75	MR 3I 100 - 90 LB 4	35
	267 260	465 478	1,6 2,65	MR 2I 41 - 80 D ** 4 MR 2I 50 - 90 L 4	6,36 6,53		53,7 53,7	2796	1,06	MR 3I 63 - 90 LB 4 MR 3I 64 - 90 LB 4	31,7
	260	478	3,75	MR 2I 51 - 90 L 4	6,53		55,2 55,2	2719	2,12 2,8	MR 3I 80 - 90 LB 4 MR 3I 81 - 90 LB 4	30,8
	292 301	426 413	1,7 3	MR 2I 41 - 80 D ** 4 MR 2I 50 - 90 L 4	5,83 5,65		53,1 58,4	2824 2570	1,06	MR 3I 100 - 90 LB 4 MR 3I 63 - 90 LB 4	32 29,1
	343 333	363 374	2 3,35	MR 2I 41 - 80 D ** 4 MR 2I 50 - 90 L 4	4,96 5,11		58,4 59,5	2570 2522	1,32 2,24	MR 3I 64 - 90 LB 4 MR 3I 80 - 100 LB 6	29,1 18,5
	415	299	3,35	MR 2I 50 - 90 L 4	4,1		59,5 65,1	2522 2308	3,15 1,18	MR 3I 81 - 100 LB 6 MR 3I 63 - 90 LB 4	18,5 26,1
2,5	7,35	20413	0,95	MR 3I 125 - 100 LB 6	150		72 65,1	2086 2308	1,32	MR 3I 63 - 90 LB 4 MR 3I 64 - 90 LB 4	23,6
	9,39 9,39	15986 15986	1,32 1,7	MR 3I 125 - 100 LB 6 MR 3I 126 - 100 LB 6	117 117		72 65	2086 2308	1,8 2,5	MR 3I 64 - 90 LB 4 MR 3I 80 - 90 LB 4	23,6
	9,39 11,5	15986	2,36	MR 3I 140 - 100 LB 6 MR 3I 101 - 100 LB 6	117 95,7		72,5	2071	2,8	MR 3I 80 - 90 LB 4	23,5
	11,5	13035	3,35	MR 3I 140 - 100 LB 6	95,5		65 72,5	2308	3,35	MR 3I 81 - 90 LB 4	26,1
	11,7 11,7	12789 12789	1,8 2,36	MR 3I 125 - 100 LB 6 MR 3I 126 - 100 LB 6	93,7 93,7		70,1 67,7	2187	1,06	MR 2I 80 - 100 LB 6	24,3 16,3
	14,1 14,1	10636 10636	1,12 1,5	MR 3I 100 - 100 LB 6 MR 3I 101 - 100 LB 6	77,9 77,9		69,3 79,2	2210 1896	2,12 1,5	MR 2I 80 - 90 LB 4 MR 3I 63 - 90 LB 4	24,5 21,5
	14,4 14,4	10433 10433	1,06 1,25	MR 3I 100 - 90 LB 4 MR 3I 101 - 90 LB 4	118 118		79,2 75,9	1896 2018	2 2,65	MR 3I 64 - 90 LB 4 MR 2I 80 - 100 LB 6	21,5 14,5
	14,8	10148	2,36	MR 3I 125 - 100 LB 6	74,4		75,9 83,4	2018 1800	3,35 3,15	MR 2I 81 - 100 LB 6 MR 3I 80 - 90 LB 4	14,5 20,4
	14,8 17,7	8494	1,4	MR 3I 100 - 90 LB 4	74,4 96,2		89,5 89,5	1713 1713	1,5 1,8	MR 2I 63 - 90 LB* 4 MR 2I 64 - 90 LB* 4	19
	17,7 18	8494 8348	1,8 2,8	MR 3I 101 - 90 LB 4 MR 3I 125 - 100 LB 6	96,2 61,2		84,8	1808 1808	2,8	MR 2I 80 - 90 LB 4 MR 2I 81 - 90 LB 4	20,1
	20,7 19,3	7261 7798	1,06 1,5	MR 3I 81 - 100 LB 6 MR 3I 100 - 100 LB 6	53,2 57,1		84,8 92,5	1623	3,35 1,7	MR 3I 63 - 90 LB 4	20,1 18,4
	19,3 19,9	7798 7545	1,9 3,15	MR 3I 101 - 100 LB 6 MR 3I 125 - 100 LB 6	57,1 55,3		103 92,5	1459 1623	1,9 2,36	MR 3I 63 - 90 LB 4 MR 3I 64 - 90 LB 4	16,5 18,4
	21,8	6882	1,7	MR 3I 100 - 90 LB 4	77,9		103 100	1459 1526	2,65 1,7	MR 3I 64 - 90 LB 4 MR 2I 63 - 90 LB* 4	16,5 16,9
	21,8 21,9	6882 6857	2,24 3,35	MR 3I 101 - 90 LB 4 MR 3I 125 - 100 LB 6	77,9 50,2		100 95,1	1526 1612	2,24 3,35	MR 2I 64 - 90 LB* 4 MR 2I 80 - 90 LB 4	16,9 17,9
	25,2 25,2	5963 5963	1 1,32	MR 3I 80 - 90 LB 4 MR 3I 81 - 90 LB 4	67,5 67,5		114 112	1342 1370	1,18 2	MR 2I 51 - 100 LB* 6 MR 2I 63 - 90 LB* 4	9,64 15,2
	25,5 25,5	5878 5878	2 2,65	MR 3I 100 - 100 LB 6 MR 3I 101 - 100 LB 6	43,1 43,1		105 112	1461 1370	1,5 2,65	MR 2I 63 - 90 LB 4 MR 2I 64 - 90 LB* 4	16,2 15,2
	26,4	5686	1,06	MR 3I 80 - 100 LB 6	41,7		106	1449	3,75	MR 2I 80 - 90 LB 4	16,1
	26,4 26,7	5686 5629	1,4 2,12	MR 3I 81 - 100 LB 6 MR 3I 100 - 90 LB 4	41,7 63,8		127 127	1207 1207	1 1,4	MR 2I 50 - 100 LB* 6 MR 2I 51 - 100 LB* 6	8,67 8,67
	26,7 28,9	5629 5196	2,8 1,12	MR 3I 101 - 90 LB 4 MR 3I 80 - 90 LB 4	63,8 58,8		120 120	1278 1278	2 2,65	MR 2I 63 - 90 LB* 4 MR 2I 64 - 90 LB* 4	14,2 14,2
	32,1 28,9	4670 5196	1,25	MR 3I 80 - 90 LB 4 MR 3I 81 - 90 LB 4	52,9 58,8		117 140	1306 1093	1,18	MR 2I 80 - 90 LB 4 MR 2I 50 - 100 LB* 6	14,5 7,85
	32,1 29,3	4670 5125	1,6 2,24	MR 3I 81 - 90 LB 4 MR 3I 100 - 90 LB 4	52,9 58		139 140	1103	1,16 1,06 1,6	MR 2I 50 - 100 LB 6 MR 2I 50 - 90 LB* 4 MR 2I 51 - 100 LB* 6	12,2 7,85
	32	4687	2,5	MR 3I 100 - 90 LB 4	53,1		139	1103	1,4	MR 2I 51 - 90 LB* 4	12,2
2) For co	mplete des		en ordering	crease possible for S2 S10 (ch. 2 g, see ch. 3. o).	b) in which	case M ₂ increa	ases and fs	decreases	proportion	ately.	
** Mounti	ng position	B5A (see ta	able ch. 2b)í. 							

P ₁	n ₂	M ₂	fs	Gear reducer - Motor	i	\mathbf{P}_1	n ₂	M ₂	fs	Gear reducer - Motor	i
hp	rpm	lb in				hp	rpm	lb in			
1)				2)		1)				2)	
2,5	134 134	1147 1144	2,36 2,12	MR 2I 63 - 90 LB* 4 MR 2I 63 - 90 LB 4	12,7 12,7	3	25,6 25,2	6973 7091	0,95 1,12	MR 3I 81 - 100 LA 4 MR 3I 81 - 90 LC 4	66,4 67,5
	134 134	1147 1144	3 2,65	MR 2I 64 - 90 LB* 4 MR 2I 64 - 90 LB 4	12,7 12,7		25,5 25,5	6990 6990	1,7 2,24	MR 3I 100 - 112 M 6 MR 3I 101 - 112 M 6	43,1 43,1
	131	1174	4,5	MR 2I 80 - 90 LB 4	13		23,8	7495	3	MR 3I 125 - 112 M 6	46,2
	155 145	992 1056	1,25	MR 2I 50 - 90 LB* 4 MR 2I 50 - 90 LB 4	11 11,7		26,4 26,9	6762 6641	1,12	MR 3I 81 - 112 M 6 MR 3I 100 - 100 LA 4	41,7 63,2
	155 150	992 1019	1,7 2,5	MR 2I 51 - 90 LB* 4 MR 2I 63 - 90 LB 4	11 11,3		26,7 26,9	6694 6641	1,7 2,36	MR 3I 100 - 90 LC 4 MR 3I 101 - 100 LA 4	63,8 63,2
	150 176	1019 869	3,15	MR 2I 64 - 90 LB 4 MR 2I 50 - 90 LB 4	11,3 9.64		26,7 27,8	6694 6423	2,36 3,55	MR 3I 101 - 90 LC 4 MR 3I 125 - 100 LA 4	63,8 61,2
	171 176	898 869	1,9 1,7	MR 2I 51 - 90 LB* 4 MR 2I 51 - 90 LB 4	9,96 9,64		32 32,1	5587 5553	1,06 1,06	MR 3I 80 - 100 LA 4 MR 3I 80 - 90 LC 4	53,2 52,9
	167 167	915 915	2,8 3,75	MR 2I 63 - 90 LB 4 MR 2I 64 - 90 LB 4	10,2 10,2		28,7 32	6217 5587	1,18	MR 3I 81 - 100 LA 4 MR 3I 81 - 100 LA 4	59,2 53,2
	205	747	1,7	MR 2I 50 - 90 LB* 4	8,29		28,9	6179	1,18	MR 3I 81 - 90 LC 4	58,8
	196 205	781 747	1,5 2,36	MR 2I 50 - 90 LB 4 MR 2I 51 - 90 LB* 4	8,67 8,29		32,1 29,8	5553 6000	1,4	MR 3I 100 - 100 LA 4	52,9 57,1
	196 185	781 827	2,12 3,15	MR 2I 51 - 90 LB 4 MR 2I 63 - 90 LB 4	8,67 9,18		29,3 32	6094 5574	1,9	MR 3I 100 - 90 LC 4 MR 3I 100 - 90 LC 4	58 53,1
	204 217	752 707	3,55 1,7	MR 2I 63 - 90 LB 4 MR 2I 50 - 90 LB 4	8,34 7,85		29,8 29,3	6000 6094	2,36 2,65	MR 3I 101 - 100 LA 4 MR 3I 101 - 90 LC 4	57,1 58
	217	707	2,36	MR 2I 51 - 90 LB 4	7,85		32 30,7	5574 5806	2,8	MR 3I 101 - 90 LC 4 MR 3I 125 - 100 LA 4	53,1 55,3
	238 238	644 644	1,9 2,8	MR 2I 50 - 90 LB 4 MR 2I 51 - 90 LB 4	7,14 7,14		35,1 36,3	5085 4921	1,18 1,18	MR 3I 80 - 112 M 6 MR 3I 80 - 90 LC 4	31,3 46,9
	238 260	644 589	2,12	MR 2I 63 - 90 LB 4 MR 2I 50 - 90 LB 4	7,14 6,53		35,1 36,3	5085 4921	1,6 1,6	MR 3I 81 - 112 M 6 MR 3I 81 - 90 LC 4	31,3 46,9
	260 265	589 579	3 4,5	MR 2I 51 - 90 LB 4 MR 2I 63 - 90 LB 4	6,53 6,42		32,9 36,1	5432 4945	2,12 2,36	MR 3I 100 - 100 LA 4 MR 3I 100 - 100 LA 4	51,7 47,1
	301 301	509 509	2,36	MR 2I 50 - 90 LB 4 MR 2I 51 - 90 LB 4	5,65		32,9 36,1	5432 4945	2,8 3,15	MR 3I 101 - 100 LA 4 MR 3I 101 - 100 LA 4	51,7 47,1
	333	461	3,15 2,65	MR 2I 50 - 90 LB 4	5,65 5,11		40,2	4444	1,32	MR 3I 80 - 112 M 6	27,4
	333 415	461 369	3,15	MR 2I 51 - 90 LB 4 MR 2I 50 - 90 LB 4	5,11 4,1		36,7 40,2	4869 4444	1,18	MR 3I 80 - 100 LA 4 MR 3I 81 - 112 M 6	46,4 27,4
3	9,39	19011	1,12	MR 3I 125 - 112 M 6	117		36,7 39,5	4869 4523	1,5 2,5	MR 3I 81 - 100 LA 4 MR 3I 100 - 100 LA 4	46,4 43,1
	9,39 9,39	19011 19011	1,4 2	MR 3I 126 - 112 M 6 MR 3I 140 - 112 M 6	117 117		37,1 39,5	4818 4523	2,36 3,55	MR 3I 100 - 90 LC 4 MR 3I 101 - 100 LA 4	45,9 43,1
	11,4 11,5	15708 15501	1,25 2,8	MR 3I 125 - 100 LA 4 MR 3I 140 - 112 M 6	150 95,5		37,1 40,8	4818 4375	3,35 1,32	MR 3I 101 - 90 LC 4 MR 3I 80 - 100 LA 4	45,9 41,7
	11,7	15209	1,5	MR 3I 125 - 112 M 6	93,7		42,7 40,8	4176 4375	1,4 1,7	MR 3I 80 - 90 LC 4 MR 3I 81 - 100 LA 4	39,8 41,7
	11,7 14,1	15209 12648	2 1,25	MR 3I 126 - 112 M 6 MR 3I 101 - 112 M 6	93,7 77,9		42,7 44,3	4176 4034	1,9 2,8	MR 3I 81 - 90 LC 4 MR 3I 100 - 90 LC 4	39,8 38,4
	14,4 14,8	12406 12068	1,06 1,9	MR 3I 101 - 90 LC 4 MR 3I 125 - 112 M 6	118 74,4		48,8 46	3658 3877	1,06 1,5	MR 3I 64 - 90 LC 4 MR 3I 80 - 100 LA 4	34,8 36,9
	14,5 14,8	12301 12068	1,7 2,5	MR 3I 125 - 100 LA 4 MR 3I 126 - 112 M 6	117 74,4		48,9 46	3649 3877	1,6	MR 3I 80 - 90 LC 4 MR 3I 81 - 100 LA 4	34,8 36,9
	14,5	12301	2,12	MR 3I 126 - 100 LA 4	117		48,9 45,7	3649 3910	2 3	MR 3I 81 - 90 LC 4 MR 3I 100 - 100 LA 4	34,8 37,2
	14,5 17,4	12301 10263	3 1,12	MR 3I 140 - 100 LA 4 MR 3I 100 - 112 M 6	117 63,2		48,6	3672	3,15	MR 3I 100 - 90 LC 4	35
	17,8 17,7	10051 10101	1,06 1,18	MR 3I 100 - 100 LA 4 MR 3I 100 - 90 LC 4	95,7 96,2		47 53,7	3881 3325	2,5 1,18	MR 2I 100 - 112 M 6 MR 3I 64 - 90 LC 4	23,4 31,7
	17,4 17,8	10263 10051	1,5 1,32	MR 3I 101 - 112 M 6 MR 3I 101 - 100 LA 4	63,2 95,7		54,3 55,2	3290 3234	1,8 1,8	MR 3I 80 - 100 LA 4 MR 3I 80 - 90 LC 4	31,3 30,8
	17,7 18,1	10101 9841	1,5 2,36	MR 3I 101 - 90 LC 4 MR 3I 125 - 100 LA 4	96,2 93,7		54,3 55,2	3290 3234	2,36 2,36	MR 3I 81 - 100 LA 4 MR 3I 81 - 90 LC 4	31,3 30,8
	18,1 19,3	9841 9273	3,15 1,25	MR 3I 126 - 100 LA 4 MR 3I 100 - 112 M 6	93,7 57,1		54,5 53,1	3273 3359	3,35 3,35	MR 3I 100 - 100 LA 4 MR 3I 100 - 90 LC 4	31,2 32
	19,3 19,9	9273 8973	1,6 2,65	MR 3I 101 - 112 M 6 MR 3I 125 - 112 M 6	57,1 55,3		55,4 57,1	3291 3193	1,4 3,15	MR 2I 80 - 112 M 6 MR 2I 100 - 112 M 6	19,9 19,3
	19,9	8973	3,55	MR 3I 126 - 112 M 6	55,3		58,4 62,1	3056 2875	1,12	MR 3I 64 - 90 LC 4 MR 3I 80 - 100 LA 4	29,1 27,4
	21,8 21,8	8184 8184	1,4 1,4	MR 3I 100 - 100 LA 4 MR 3I 100 - 90 LC 4	77,9 77,9		62,1 59,9	2875 2980	2,5 3,75	MR 3I 81 - 100 LA 4 MR 3I 100 - 100 LA 4	27,4 27,4 28,4
	21,8 21,8	8184 8184	1,9 1,9	MR 3I 101 - 100 LA 4 MR 3I 101 - 90 LC 4	77,9 77,9		65,1	2744	1	MR 3I 63 - 90 LC 4	26,1
	22,9	7809	3	MR 3I 125 - 100 LA 4	74,4		72	2480	1,12	MR 3I 63 - 90 LC 4	23,6

¹⁾ Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3.
* Mounting position **B5R** (see table ch. 2b).

P ₁	n ₂	M_2 Ib in	fs	Gear reducer - Motor	i	P ₁	n ₂	M_2 Ib in	fs	Gear reducer - Motor	i
1)				2)		1)				2)	
3	65,1	2744	1,32	MR 3I 64 - 90 LC 4	26,1	3	185	984	3,55	MR 2I 64 - 90 LC 4	9,18
	72 70,1	2480 2548	1,5 2,24	MR 3I 64 - 90 LC 4 MR 3I 80 - 100 LA 4	23,6 24,3		217 217	841 841	1,5 2	MR 2I 50 - 90 LC 4 MR 2I 51 - 90 LC 4	7,85 7,85
	65 72,5	2744 2463	2,12 2,36	MR 3I 80 - 90 LC 4 MR 3I 80 - 90 LC 4	26,1 23,5		213 213	858 858	3 4	MR 2I 63 - 100 LA 4 MR 2I 64 - 100 LA 4	8 8
	70,1 65	2548 2744	3 2,8	MR 3I 81 - 100 LA 4 MR 3I 81 - 90 LC 4	24,3 26,1		238	766	1,6	MR 2I 50 - 90 LC 4	7,14
	72,5 67,7	2463 2692	3,15 1,9	MR 3I 81 - 90 LC 4 MR 2I 80 - 112 M 6	23,5 16,3		238 235	766 775	2,24 3,35	MR 2I 51 - 90 LC 4 MR 2I 63 - 100 LA 4	7,14 7,23
	69,3 67,7	2629 2692	1,7	MR 2I 80 - 90 LC 4 MR 2I 81 - 112 M 6	24,5 16,3		238 260	765 700	3,55 1,8	MR 2I 63 - 90 LC 4 MR 2I 50 - 90 LC 4	7,14 6,53
	72,6	2511	3,75	MR 2I 100 - 100 LA 4	23,4		260	700	2,5	MR 2I 51 - 90 LC 4	6,53
	79,2 79,2	2254 2254	1,25 1,7	MR 3I 63 - 90 LC 4 MR 3I 64 - 90 LC 4	21,5 21,5		259 265	704 688	3,75 3,75	MR 2I 63 - 100 LA 4 MR 2I 63 - 90 LC 4	6,57 6,42
	82,6 83,4	2162 2141	2,65 2,65	MR 3I 80 - 100 LA 4 MR 3I 80 - 90 LC 4	20,6 20,4		301 301	605 605	2,65	MR 2I 50 - 90 LC 4 MR 2I 51 - 90 LC 4	5,65 5,65
	82,6	2162	3,55	MR 3I 81 - 100 LA 4	20,6		302 333	603 548	4,25 2,24	MR 2I 63 - 100 LA 4 MR 2I 50 - 90 LC 4	5,63 5,11
	86,1 84,5	2115	1,06	MR 2I 63 - 112 M 6 MR 2I 80 - 112 M 6	12,8 13		333	548	2,65	MR 2I 51 - 90 LC 4	5,11
	85,6 84,8	2130 2150	2,12 2,36	MR 2I 80 - 100 LA 4 MR 2I 80 - 90 LC 4	19,9 20,1		336 415	542 439	4,75 2,36	MR 2I 63 - 100 LA 4 MR 2I 50 - 90 LC 4	5,06 4,1
	84,5 84,8	2157 2150	3,35 2,8	MR 2I 81 - 112 M 6 MR 2I 81 - 90 LC 4	13 20,1		415	439	2,65	MR 2I 51 - 90 LC 4	4,1
	92,5 103	1930 1735	1,5 1,6	MR 3I 63 - 90 LC 4 MR 3I 63 - 90 LC 4	18,4 16,5	4	8,94 9,39	27229 25924	2,8	MR 3I 180 - 132 S 6 MR 3I 126 - 112 MC 6	123 117
	92,5 103	1930 1735	2,12	MR 3I 64 - 90 LC 4 MR 3I 64 - 90 LC 4	18,4 16,5		9,39 9,21	25924 26433	1,5	MR 3I 140 - 112 MC 6 MR 3I 160 - 132 S 6	117 119
	92	1941	2,8	MR 3I 80 - 100 LA 4	18,5		11,5	21138	2	MR 3I 140 - 112 MC 6	95,5
	95,1 106	1917 1687	2,8 3,35	MR 2I 80 - 90 LC 4 MR 3I 80 - 100 LA 4	17,9 16,1		11 11,7	22192 20739	2,8	MR 3I 160 - 132 S 6 MR 3I 125 - 112 MC 6	100 93,7
	110 105	1657 1737	1,5 1,32	MR 2I 63 - 112 M 6 MR 2I 63 - 90 LC 4	10 16,2		11,7	20739	1,5	MR 3I 126 - 112 MC 6	93,7
	110 105	1657 1742	1,8 2,8	MR 2I 64 - 112 M 6 MR 2I 80 - 100 LA 4	10 16,3		13,1 14,8	18536 16456	3,35 1,4	MR 3I 160 - 132 S 6 MR 3I 125 - 112 MC 6	83,8 74,4
	106 105	1723 1742	3,15 3,55	MR 2I 80 - 90 LC 4 MR 2I 81 - 100 LA 4	16,1 16,3		14,5 14,8	16774 16456	1,32 1,9	MR 3I 125 - 100 LB 4 MR 3I 126 - 112 MC 6	117 74,4
	123	1476	1,8	MR 2I 63 - 112 M 6	8,91		14,5 14,5	16774 16772	1,6 2,5	MR 3I 126 - 100 LB 4 MR 3I 140 - 112 MC 6	117 [°] 75,8
	123 117	1476 1553	2,24 3,35	MR 2I 64 - 112 M 6 MR 2I 80 - 100 LA 4	8,91 14,5		14,5	16774	2,24	MR 3I 140 - 100 LB 4	117
	117 139	1553 1311	3,35	MR 2I 80 - 90 LC 4 MR 2I 51 - 90 LC* 4	14,5 12,2		17,4 17,8	13995 13706	1,12 0,95	MR 3I 101 - 112 MC 6 MR 3I 101 - 100 LB 4	63,2 95,7
	138 133	1325 1369	2	MR 2I 63 - 112 M 6 MR 2I 63 - 100 LA 4	8 12.8		18,1 18,1	13419 13419	1,7 2,24	MR 3I 125 - 100 LB 4 MR 3I 126 - 100 LB 4	93,7 93,7
	134	1361	1,6 1,8	MR 2I 63 - 90 LC 4	12,7		17,8 19,3	13677 12645	3,15	MR 3I 140 - 100 LB 4 MR 3I 101 - 112 MC 6	95,5 57,1
	138 134	1325 1361	2,65 2,24	MR 2I 64 - 112 M 6 MR 2I 64 - 90 LC 4	8 12,7		19,9 19,9	12235 12235	1,9 2,5	MR 3I 125 - 112 MC 6 MR 3I 126 - 112 MC 6	55,3 55,3
	131 155	1396 1179	3,75	MR 2I 80 - 100 LA 4 MR 2I 50 - 90 LC* 4	13 11		19,7	12328	3,55	MR 3I 140 - 112 MC 6	55,7
	155 152	1179 1198	1,4 2,24	MR 2I 51 - 90 LC* 4 MR 2I 63 - 112 M 6	11 7,23		21,8 21,8	11160 11160	1,06 1,4	MR 3I 100 - 100 LB 4 MR 3I 101 - 100 LB 4	77,9 77,9
	150 152	1212 1198	2,12	MR 2I 63 - 90 LC 4 MR 2I 64 - 112 M 6	11,3 7,23		22,9 22,9	10648 10648	2,24 2,8	MR 3I 125 - 100 LB 4 MR 3I 126 - 100 LB 4	74,4 74,4
	150	1212	2,65	MR 2I 64 - 90 LC 4	11,3		21,7 23,4	11234 10421	3,75 1,12	MR 3I 140 - 112 MC 6	50,8 47,1
	176 171	1033 1068	1,12 1,6	MR 2I 50 - 90 LC 4 MR 2I 51 - 90 LC* 4	9,64 9,96		25,5	9532	1,25	MR 3I 100 - 112 MC 6	43,1
	176 170	1033 1072	1,5 2,24	MR 2I 51 - 90 LC 4 MR 2I 63 - 100 LA 4	9,64 10		24 23,4	10124	1,12 1,5	MR 3I 100 - 132 S 6 MR 3I 101 - 112 MC 6	45,7 47,1
	167 170	1088 1072	2,36 2,8	MR 2I 63 - 90 LC 4 MR 2I 64 - 100 LA 4	10,2 10		25,5 24	9532 10124	1,7	MR 3I 101 - 112 MC 6 MR 3I 101 - 132 S 6	43,1 45,7
	167	1088	3,15	MR 2I 64 - 90 LC 4	10,2		23,8 24,7	10221 9852	2,24 2,36	MR 3I 125 - 112 MC 6 MR 3I 125 - 132 S 6	46,2 44,5
	205 196	889 929	1,4	MR 2I 50 - 90 LC* 4 MR 2I 50 - 90 LC 4	8,29 8,67		23,8 23,6	10221 10325	2,8 4	MR 3I 126 - 112 MC 6 MR 3I 140 - 112 MC 6	46,2 46,7
	205 196	889 929	2 1,7	MR 2I 51 - 90 LC* 4 MR 2I 51 - 90 LC 4	8,29 8,67		26,9	9056	1,32	MR 3I 100 - 100 LB 4	63,2
	191 185	955 984	2,65 2,65	MR 2I 63 - 100 LA 4 MR 2I 63 - 90 LC 4	8,91 9,18		26,9 27,8	9056 8759	1,7 2,65	MR 3I 101 - 100 LB 4 MR 3I 125 - 100 LB 4	63,2 61,2
	204 191	894 955	3 3,35	MR 2I 63 - 90 LC 4 MR 2I 64 - 100 LA 4	8,34 8,91		27,8 32	8759 7619	3,55	MR 3I 126 - 100 LB 4 MR 3I 81 - 100 LB 4	61,2 53,2
				<u> </u>	· ·		1			<u> </u>	

¹⁾ Powers valid for continuous duty S1: **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3. * Mounting position **B5R** (see table ch. 2b).

P ₁	n ₂	M_2 Ib in	fs	Gear reducer - Motor	i	P ₁	n ₂	M_2 Ib in	fs	Gear reducer - Motor	i
1)				2)		1)				2)	
4	29,8 29,5 29,8 30,7	8182 8239 8182 7917	1,4 1,9 1,8 3	MR 3I 100 - 100 LB 4 MR 3I 101 - 112 MC 6 MR 3I 101 - 100 LB 4 MR 3I 125 - 100 LB 4	57,1 37,2 57,1 55,3	4	110 110 106 105 106	2259 2259 2349 2375 2349	1,12 1,32 2,36 2,12 3	MR 2I 63 - 112 MC 6 MR 2I 64 - 112 MC 6 MR 2I 80 - 100 LB* 4 MR 2I 80 - 100 LB 4 MR 2I 81 - 100 LB* 4	10 10 16,1 16,3 16,1
	36,3 32,9 36,1 32,9 36,1	6711 7407 6743 7407 6743	1,18 1,6 1,7 2,12 2,36	MR 3I 81 - 100 LB* 4 MR 3I 100 - 100 LB 4 MR 3I 100 - 100 LB 4 MR 3I 101 - 100 LB 4 MR 3I 101 - 100 LB 4 MR 3I 125 - 100 LB 4	46,9 51,7 47,1 51,7 47,1		105 123 123 117 117	2375 2013 2013 2118 2118	2,65 1,32 1,6 2,5 3,15	MR 2I 81 - 100 LB 4 MR 2I 63 - 112 MC 6 MR 2I 64 - 112 MC 6 MR 2I 80 - 100 LB 4 MR 2I 81 - 100 LB 4	10,1 16,3 8,91 8,91 14,5 14,5
	33,8 40,2 36,7 39,5 39,5 36,8	7195 6059 6639 6168 6168 6613	3,35 1,25 1,06 1,9 2,5	MR 3I 81 - 112 MC 6 MR 3I 81 - 100 LB 4 MR 3I 100 - 100 LB 4 MR 3I 101 - 100 LB 4 MR 3I 125 - 100 LB 4	50,2 27,4 46,4 43,1 43,1		138 134 133 138 134	1807 1855 1867 1807 1855	1,5 1,32 1,18 1,9	MR 2I 63 - 112 MC 6 MR 2I 63 - 100 LB* 4 MR 2I 63 - 100 LB 4 MR 2I 64 - 112 MC 6 MR 2I 64 - 100 LB* 4	8 12,7 12,8 8 12,7
	45,3 40,8 45,3 40,8	5370 5966 5370 5966	3,35 1,06 0,95 1,4 1,25	MR 3I 80 - 112 MC 6 MR 3I 80 - 100 LB 4 MR 3I 81 - 112 MC 6 MR 3I 81 - 100 LB 4	46,2 24,3 41,7 24,3 41,7		131 131 152 150	1903 1903 1634 1653 1634	2,8 3,75 1,6 1,6	MR 2I 80 - 100 LB 4 MR 2I 81 - 100 LB 4 MR 2I 63 - 112 MC 6 MR 2I 63 - 100 LB* 4	13 13 7,23 11,3
	42,4 42,4 41 45,4 46	5744 5744 5939 5368 5287	2 2,8 3,75 4,25 1,12	MR 3I 100 - 112 MC 6 MR 3I 101 - 112 MC 6 MR 3I 125 - 100 LB 4 MR 3I 125 - 100 LB 4 MR 3I 80 - 100 LB 4	26 26 41,5 37,5 36,9		152 150 145 176 167	1653 1719 1409 1484	2,24 2 3 1,06 1,8	MR 2I 64 - 112 MC 6 MR 2I 64 - 100 LB* 4 MR 2I 80 - 100 LB 4 MR 2I 51 - 100 LB* 4 MR 2I 63 - 100 LB* 4	7,23 11,3 11,8 9,64 10,2
	46 45,7 45,7 47 54,3	5287 5331 5331 5293 4487	1,5 2,12 3 1,8 1,32	MR 3I 81 - 100 LB 4 MR 3I 100 - 100 LB 4 MR 3I 101 - 100 LB 4 MR 2I 100 - 112 MC 6 MR 3I 80 - 100 LB 4	36,9 37,2 37,2 23,4 31,3		170 167 167 170 161	1462 1485 1484 1462 1544	1,7 2,36 2,36 2 3,35	MR 2I 63 - 100 LB 4 MR 2I 64 - 112 MC 6 MR 2I 64 - 100 LB* 4 MR 2I 64 - 100 LB 4 MR 2I 80 - 100 LB 4	10 6,57 10,2 10 10,6
	54,3 54,5 54,5 57,1 57,1	4487 4463 4463 4354 4354	1,7 2,5 3,35 2,36 2,8	MR 3I 81 - 100 LB 4 MR 3I 100 - 100 LB 4 MR 3I 101 - 100 LB 4 MR 2I 100 - 112 MC 6 MR 2I 101 - 112 MC 6	31,3 31,2 31,2 19,3 19,3		182 196 196 204 191	1369 1267 1267 1219 1302	3,75 0,95 1,25 2,12 1,9	MR 2I 80 - 100 LB 4 MR 2I 50 - 100 LB* 4 MR 2I 51 - 100 LB* 4 MR 2I 63 - 100 LB* 4 MR 2I 63 - 100 LB 4 MR 2I 63 - 100 LB 4	9,36 8,67 8,67 8,34 8,91
	62,1 62,1 59,9 59,9 65,1	3921 3921 4063 4063 3742	1,4 1,9 2,8 3,75	MR 3I 80 - 100 LB 4 MR 3I 81 - 100 LB 4 MR 3I 100 - 100 LB 4 MR 3I 101 - 100 LB 4 MR 3I 64 - 100 LB* 4	27,4 27,4 28,4 28,4 26,1		204 191 217 217 213	1219 1302 1147 1147 1169	3 2,5 1,06 1,5 2,24	MR 2I 64 - 100 LB* 4 MR 2I 64 - 100 LB 4 MR 2I 50 - 100 LB* 4 MR 2I 51 - 100 LB* 4 MR 2I 63 - 100 LB 4	8,34 8,91 7,85 7,85 8
	72 70,1 70,1 65,5 67,7	3742 3382 3474 3474 3717 3671	1,12 1,6 2,12 3 1,4	MR 3I 64 - 100 LB * 4 MR 3I 80 - 100 LB * 4 MR 3I 81 - 100 LB 4 MR 3I 100 - 100 LB 4 MR 2I 80 - 112 MC 6	23,6 24,3 24,3 26 16,3		213 214 238 238 235	1169 1161 1044 1044 1057	3 4,5 1,18 1,7 2,5	MR 2I 64 - 100 LB 4 MR 2I 80 - 100 LB 4 MR 2I 50 - 100 LB* 4 MR 2I 51 - 100 LB* 4 MR 2I 63 - 100 LB 4	8 7,95 7,14 7,14 7,23
	69,3 67,7 72,6 79,2	3584 3671 3425 3074	1,25 1,7 2,8 1,25	MR 2I 80 - 100 LB* 4 MR 2I 81 - 112 MC 6 MR 2I 100 - 100 LB 4 MR 3I 64 - 100 LB* 4	24,5 16,3 23,4 21,5		235 260 260 275 259	955 955 955 904 961	3,35 1,32 1,8 2,36 2,65	MR 2I 64 - 100 LB 4 MR 2I 50 - 100 LB* 4 MR 2I 51 - 100 LB* 4 MR 2I 63 - 112 MC 6 MR 2I 63 - 100 LB 4	7,23 6,53 6,53 4 6,57
	75,8 75,9 75,9 82,6 82,6	3212 3273 3273 2948 2948	3,55 1,6 2,12 1,9 2,5	MR 3I 100 - 100 LB 4 MR 2I 80 - 112 MC 6 MR 2I 81 - 112 MC 6 MR 3I 80 - 100 LB 4 MR 3I 81 - 100 LB 4	22,4 14,5 14,5 20,6 20,6		275 259 301 301	904 961 825 825	2,65 3,55 1,5 2	MR 2I 64 - 112 MC 6 MR 2I 64 - 100 LB 4 MR 2I 50 - 100 LB* 4 MR 2I 51 - 100 LB* 4	4 6,57 5,65 5,65
	84,8 85,6 84,8 88,2 92,5	2932 2904 2932 2817 2631	1,7 1,6 2,12 3,55 1,06	MR 2I 80 - 100 LB* 4 MR 2I 80 - 100 LB 4 MR 2I 81 - 100 LB* 4 MR 2I 100 - 100 LB 4	20,1 19,9 20,1 19,3		302 333 333 336 415	822 747 747 739 599	3,15 1,6 2 3,55 1,7	MR 2I 63 - 100 LB 4 MR 2I 50 - 100 LB* 4 MR 2I 51 - 100 LB* 4 MR 2I 63 - 100 LB 4 MR 2I 50 - 100 LB* 4	5,63 5,11 5,11 5,06 4,1
	92,5 103 92,5 103	2366 2631 2366	1,06 1,18 1,4 1,6	MR 3I 63 - 100 LB* 4 MR 3I 63 - 100 LB* 4 MR 3I 64 - 100 LB* 4 MR 3I 64 - 100 LB* 4	18,4 16,5 18,4 16,5		415 425	599 585	2 3,75	MR 2I 51 - 100 LB* 4 MR 2I 63 - 100 LB 4	4,1 4
	92 92 95,1 98,1	2647 2647 2614 2534	2,12 2,8 2,5 4,25	MR 3I 80 - 100 LB 4 MR 3I 81 - 100 LB 4 MR 2I 81 - 100 LB* 4 MR 2I 100 - 100 LB 4	18,5 18,5 18,5 17,9 17,3	5,4	8,94 9,21 11 10,9	36305 35243 29590 29737	2,12 1,5 2,12 2,8	MR 3I 180 - 132 M 6 MR 3I 160 - 132 M 6 MR 3I 160 - 132 M 6 MR 3I 180 - 132 M 6	123 119 100 101
	106 106	2300 2300	2,5 3,35	MR 3I 80 - 100 LB 4 MR 3I 81 - 100 LB 4	16,1 16,1		13,1 13,1	24715 24837	2,5 3,35	MR 3I 160 - 132 M 6 MR 3I 180 - 132 M 6	83,8 84,2

¹⁾ Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3. * Mounting position **B5R** (see table ch. 2b).

P ₁	n ₂	M_2	fs	Gear reducer - Motor	i	P_1	n ₂	M ₂	fs	Gear reducer - Motor	i
hp	rpm	lb in				hp	rpm	lb in			
1)				2)		1)				2)	
5,4	14,5 14,5	22366 22366	0,95 1,18	MR 3I 125 - 112 M 4 MR 3I 126 - 112 M 4	117 117	5,4	75,8 73,5	4283 4509	3,55 2,12	MR 3I 101 - 112 M 4 MR 2I 100 - 132 M 6	22,4 15
	14,5	22366	1,7	MR 3I 140 - 112 M 4	117		82,6	3931	1,4	MR 3I 80 - 112 M 4	20,6
	18,1	17893	1,32	MR 3I 125 - 112 M 4	93,7		82,6	3931	1,9	MR 3I 81 - 112 M 4	20,6
	18,1 17,8	17893 18237	1,7 2,36	MR 3I 126 - 112 M 4 MR 3I 140 - 112 M 4	93,7 95,5		83,7 84,8	3877	3 1,32	MR 3I 100 - 112 M 4 MR 2I 80 - 112 M * 4	20,3 20,1
	16,8	19355	3,15	MR 3I 160 - 132 M 6	65,6		85,6	3872	1,18	MR 2I 80 - 112 M 4 MR 2I 81 - 112 M * 4	19,9
	20,1 20,1	16184 16184	1,4 1,8	MR 3I 125 - 132 M 6 MR 3I 126 - 132 M 6	54,8 54,8		84,8 88,2	3909 3756	1,6 2,65	MR 2I 81 - 112 M * 4 MR 2I 100 - 112 M 4	20,1 19,3
	19,9	16349	2,5	MR 3I 140 - 132 M 6	55,4		88,2	3756	3,35	MR 2I 101 - 112 M 4	19,3
	19,2	16929	3,75	MR 3I 160 - 132 M 6	57,4		92 92	3529 3529	1,6 2,12	MR 3I 80 - 112 M 4 MR 3I 81 - 112 M 4	18,5 18,5
	21,8 22,9	14880 14197	1,06 1,7	MR 3I 101 - 112 M 4 MR 3I 125 - 112 M 4	77,9 74,4		95,1	3485	1,5	MR 2I 80 - 112 M * 4	17,9
	22,9	14197	2,12	MR 3I 126 - 112 M 4	74,4		95,1 98,1	3485	1,9 3,15	MR 2 81 - 112 M * 4 MR 2 100 - 112 M	17,9 17,3
	22,4 24	14470	3 1,06	MR 3I 140 - 112 M 4 MR 3I 101 - 132 M 6	75,8 45,7		106	3067	1,8	MR 3I 80 - 112 M 4	16,1
	24,7	13135	1,8	MR 3I 125 - 132 M 6	45,7		106 106	3067 3132	2,5 1,7	MR 3I 81 - 112 M 4 MR 2I 80 - 112 M * 4	16,1 16,1
	24,7 24,5	13135 13235	2,36 3,35	MR 3I 126 - 132 M 6 MR 3I 140 - 132 M 6	44,5 44,9		105	3167	1,6	MR 2I 80 - 112 M 4	16,3
	26,9	12074	0,95	MR 3I 100 - 112 M 4	63,2		106 105	3132 3167	2,24 1,9	MR 2I 81 - 112 M * 4 MR 2I 81 - 112 M 4	16,1 16,3
	26,9	12074	1,32	MR 3I 101 - 112 M 4	63,2		108	3058	3,55	MR 2I 100 - 112 M 4	15,7
	27,8 27,8	11679 11679	2 2,65	MR 3I 125 - 112 M 4 MR 3I 126 - 112 M 4	61,2 61,2		117	2824	1,8	MR 2I 80 - 112 M 4	14,5
	27,3	11904	3,55	MR 3I 140 - 112 M 4	62,3		117 124	2824 2681	2,36 3,75	MR 2I 81 - 112 M 4 MR 2I 100 - 112 M 4	14,5 13,8
	31,9 29,8	10176 10909	1,12	MR 3I 100 - 132 M 6 MR 3I 100 - 112 M 4	34,5 57,1		134	2474	1,25	MR 2I 64 - 112 M * 4	12,7
	31,9	10176	1,6	MR 3I 101 - 132 M 6	34,5		131	2538 2538	2,12 2,8	MR 2I 80 - 112 M 4 MR 2I 81 - 112 M 4	13 13
	29,8 30,7	10909 10556	1,32 2,24	MR 3I 101 - 112 M 4 MR 3I 125 - 112 M 4	57,1 55,3		137	2427	4,5	MR 2I 100 - 112 M 4	12,5
	30,7	10556	3	MR 3I 126 - 112 M 4	55,3		150 150	2204 2204	1,18 1,5	MR 2I 63 - 112 M * 4 MR 2I 64 - 112 M * 4	11,3 11,3
	32,9 36,1	9876 8991	1,18 1,32	MR 3I 100 - 112 M 4 MR 3I 100 - 112 M 4	51,7 47.1		147	2249	2,36	MR 2I 80 - 112 M * 4	11,5
	32,9	9876	1,6	MR 3I 100 - 112 M 4 MR 3I 101 - 112 M 4	47,1 51,7		145 147	2291 2249	2,24 3,15	MR 2I 80 - 112 M 4 MR 2I 81 - 112 M * 4	11,8 11,5
	36,1 33,8	8991 9593	1,8 2,5	MR 3I 101 - 112 M 4 MR 3I 125 - 112 M 4	47,1 50,2		145	2291	2,8	MR 2I 81 - 112 M 4	11,8
	33,8	9593	3,35	MR 3I 126 - 112 M 4	50,2		150 167	2209 1979	4,75	MR 2I 100 - 112 M 4 MR 2I 63 - 112 M * 4	11,3
	39,5	8224	1,4	MR 3I 100 - 112 M 4	43,1		170	1979	1,32 1,25	MR 2I 63 - 112 M 4	10,2 10
	39,5 36,8	8224 8818	1,9 2,5	MR 3I 101 - 112 M 4 MR 3I 125 - 112 M 4	43,1 46,2		167 170	1979 1949	1,7 1,5	MR 2I 64 - 112 M * 4 MR 2I 64 - 112 M 4	10,2 10
	36,8	8818	3,15	MR 3I 126 - 112 M 4	46,2		161	2059	2,5	MR 2I 80 - 112 M 4	10,6
	40,8 44,1	7955 7364	0,95 1,5	MR 3I 81 - 112 M 4 MR 3I 100 - 132 M 6	41,7 25		182 161	1825 2059	2,8 3,35	MR 2I 80 - 112 M 4 MR 2I 81 - 112 M 4	9,36 10,6
	44,1	7364	2	MR 3I 101 - 132 M 6	25		182	1825	4	MR 2I 81 - 112 M 4	9,36
	41 45,4	7918 7157	2,8 3,15	MR 3I 125 - 112 M 4 MR 3I 125 - 112 M 4	41,5 37,5		204 191	1626	1,6	MR 2I 63 - 112 M * 4 MR 2I 63 - 112 M 4	8,34
	45,3	7308	2,5	MR 2l 125 - 132 M 6	24,3		204	1736 1626	1,5 2,24	MR 2I 64 - 112 M * 4	8,91 8,34
	46 45.7	7050 7108	1,12	MR 3I 81 - 112 M 4	36,9		191 193	1736 1720	1,8 3,15	MR 2I 64 - 112 M 4 MR 2I 80 - 132 M 6	8,91 5,71
	45,7 45,7	7108	1,6 2,24	MR 3I 100 - 112 M 4 MR 3I 101 - 112 M 4	37,2 37,2		217	1529	1,12	MR 2I 51 - 112 M * 4	7,85
	49,9	6504	3,55	MR 3I 125 - 112 M 4	34,1		213	1559	1,7	MR 2I 63 - 112 M 4	8
	54,3 54,3	5982 5982	0,95 1,32	MR 3I 80 - 112 M 4 MR 3I 81 - 112 M 4	31,3 31,3		213 214	1559 1549	2,12 3,35	MR 2I 64 - 112 M 4 MR 2I 80 - 112 M 4	8 7,95
	54,5	5951	1,9	MR 3I 100 - 112 M 4	31,2		238	1392	1,25	MR 2I 51 - 112 M * 4	7,14
	54,5 57,9	5951 5723	2,5 3,55	MR 3I 101 - 112 M 4 MR 2I 125 - 132 M 6	31,2 19		235 235	1409 1409	1,8 2,5	MR 2I 63 - 112 M 4 MR 2I 64 - 112 M 4	7,23 7,23
	62,1	5228	1,06	MR 3I 80 - 112 M 4	27,4		238	1390	3,75	MR 2I 80 - 112 M 4	7,13
	62,1 59,9	5228 5418	1,4 2,12	MR 3I 81 - 112 M 4 MR 3I 100 - 112 M 4	27,4 28,4		260 259	1273 1281	1,4 2	MR 2I 51 - 112 M * 4 MR 2I 63 - 112 M 4	6,53 6,57
	59,9	5418	2,12	MR 3I 101 - 112 M 4	28,4		259	1281	2,8	MR 2I 64 - 112 M 4	6,57
	70,1	4633	1,18	MR 3I 80 - 112 M 4	24,3		274	1208	4,5	MR 2I 80 - 112 M 4	6,2
	70,1 65,5	4633 4955	1,6 2,24	MR 3I 81 - 112 M 4 MR 3I 100 - 112 M 4	24,3 26		301 302	1101 1096	1,5 2,36	MR 2I 51 - 112 M * 4 MR 2I 63 - 112 M 4	5,65 5,63
	65,5	4955	3,15	MR 3I 101 - 112 M 4	26		302	1096	3	MR 2I 64 - 112 M 4	5,63
	69,3 72,6	4779 4566	0,95 2	MR 2I 80 - 112 M * 4 MR 2I 100 - 112 M 4	24,5 23,4		333 336	996 986	1,5 2,65	MR 2I 51 - 112 M * 4 MR 2I 63 - 112 M 4	5,11 5,06
	75,8	4283	2,65	MR 3I 100 - 112 M 4	22,4		336	986	3	MR 2I 64 - 112 M 4	5,06
				l							

¹⁾ Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3. * Mounting position **B5R** (see table ch. 2b).

										-	
P ₁	n ₂	M ₂	fs	Gear reducer - Motor	i	P ₁	n ₂	M ₂	fs	Gear reducer - Motor	i
hp	rpm	lb in				hp	rpm	lb in			
1)				2)		1)				2)	
5,4	415	798	1,5	MR 2I 51 - 112 M * 4	4,1	7,5	37,2	12010	1,18	MR 3I 101 - 132 S 4	45,7
	425 425	780 780	2,8	MR 2I 63 - 112 M 4 MR 2I 64 - 112 M 4	4		36,8 38,2	12125 11687	1,8 2	MR 3I 125 - 112 MC 4 MR 3I 125 - 132 S 4	46,2 44,5
7,5	8,94	49920	1,5	MR 3I 180 - 132 MB 6	123		36,8	12125	2,36	MR 3I 126 - 112 MC 4	46,2
',•	9,21	48460	1,12	MR 3I 160 - 132 MB 6	119		38,2 36,4	11687 12248	2,65 3,35	MR 3I 126 - 132 S 4 MR 3I 140 - 112 MC 4	44,5 46,7
	11	40686 40888	1,5 2,12	MR 3I 160 - 132 MB 6 MR 3I 180 - 132 MB 6	100 101		37,9 41	11775	3,55 1,06	MR 3I 140 - 132 S 4 MR 3I 100 - 132 S 4	44,9
	10,9 13,1	33982	1,8	MR 3I 160 - 132 MB 6	83,8		45,1	9899	1,18	MR 3I 100 - 132 S 4	41,4 37,7
	14,2 13,1	31356 34151	1,7 2,5	MR 3I 160 - 132 S 4 MR 3I 180 - 132 MB 6	119 84,2		41 45,1	10873	1,4 1,6	MR 3I 101 - 132 S 4 MR 3I 101 - 132 S 4	41,4 37,7
	13,8	32301	2,36	MR 3I 180 - 132 S 4	123		41 45,4	10888 9841	2,12 2,36	MR 3I 125 - 112 MC 4 MR 3I 125 - 112 MC 4	41,5 37,5
	14,7 14,5	30364 30753	1,25 1,25	MR 3I 140 - 132 MB 6 MR 3I 140 - 112 MC 4	74,8 117		42	10621	2,12	MR 3I 125 - 132 S 4	40,5
	18,1	24602	0,95	MR 3I 125 - 112 MC 4	93,7		41 45,4	10888 9841	2,8 3,15	MR 3I 126 - 112 MC 4 MR 3I 126 - 112 MC 4	41,5 37,5
	18,1 17,8	24602 25075	1,25 1,7	MR 3I 126 - 112 MC 4 MR 3I 140 - 112 MC 4	93,7 95,5		42 45,3	10621 9862	3 4	MR 3I 126 - 132 S 4 MR 3I 140 - 132 S 4	40,5 37,6
	17 [°] 16,9	26326 26457	2,36 3,15	MR 3I 160 - 132 S 4 MR 3I 180 - 132 S 4	100 101		45,3	10048	1,8	MR 2I 125 - 132 MB 6	24,3
	20,1	22253	1	MR 3I 125 - 132 MB 6	54,8		45,7 49,3	9774 9054	1,18 1,25	MR 3I 100 - 112 MC 4 MR 3I 100 - 132 S 4	37,2 34,5
	20,1 19,9	22253 22480	1,32 1,8	MR 3I 126 - 132 MB 6 MR 3I 140 - 132 MB 6	54,8 55,4		45,7 49,3	9774 9054	1,6 1,7	MR 3I 101 - 112 MC 4 MR 3I 101 - 132 S 4	37,2 34,5
	20,3	21989 22098	2,8	MR 3I 160 - 132 S 4	83,8		49,9	8943	2,5	MR 3I 125 - 112 MC 4	34,1
	20,2 22,3	19983	3,75	MR 3I 180 - 132 S 4 MR 3I 125 - 132 MB 6	84,2 49,3		45,7 50,9	9763 8766	2,24 2,65	MR 3I 125 - 132 S 4 MR 3I 125 - 132 S 4	37,2 33,4
	22,9 22,7	19521 19648	1,18 1,12	MR 3I 125 - 112 MC 4 MR 3I 125 - 132 S 4	74,4 74,8		45,7 50,9	9763 8766	2,8 3,35	MR 3I 126 - 132 S 4 MR 3I 126 - 132 S 4	37,2 33,4
	22,3	19983	1,5	MR 3I 126 - 132 MB 6	49,3		54,3	8226	0,95	MR 3I 81 - 112 MC 4	31,3
	22,9 22,7	19521 19648	1,6 1,32	MR 3I 126 - 112 MC 4 MR 3I 126 - 132 S 4	74,4 74,8		54,5 57	8183 7826	1,4 1,5	MR 3I 100 - 112 MC 4 MR 3I 100 - 132 S 4	31,2 29,8
	21,9 22,4	20367 19897	2,12 2,12	MR 3I 140 - 132 MB 6 MR 3I 140 - 112 MC 4	50,2 75,8		54,5 57	8183 7826	1,8	MR 3I 101 - 112 MC 4 MR 3I 101 - 132 S 4	31,2 29,8
	22,7 22,1	19648 20174	1,9 3,15	MR 3I 140 - 132 S 4 MR 3I 160 - 132 MB 6	74,8 49,7		56,3 57,9	7923 7869	2,8 2,65	MR 3I 125 - 132 S 4 MR 2I 125 - 132 MB 6	30,2 19
	24,7	18061	1,32	MR 3I 125 - 132 MB 6	44,5		62,1	7188	1	MR 3I 81 - 112 MC 4	27,4
	24,7 24,5	18061 18198	1,7 2,36	MR 3I 126 - 132 MB 6 MR 3I 140 - 132 MB 6	44,5 44,9		59,9 59,9	7449 7449	1,5 2	MR 3I 100 - 112 MC 4 MR 3I 101 - 112 MC 4	28,4 28,4
	25,5	17488	3,55	MR 3I 160 - 132 MB 6	43,1		62	7201	3,15	MR 3I 125 - 132 S 4	27,4
	27,8 28,4	16059 15718	1,5 1,5	MR 3I 125 - 112 MC 4 MR 3I 125 - 132 S 4	61,2 59,9		70,1 65,5	6370 6814	1,18 1,7	MR 3I 81 - 112 MC 4 MR 3I 100 - 112 MC 4	24,3 26
	27,8 28,4	16059 15718	1,9 1,9	MR 3I 126 - 112 MC 4 MR 3I 126 - 132 S 4	61,2 59,9		68,1 65,5	6552 6814	1,7 2,24	MR 3I 100 - 132 S 4 MR 3I 101 - 112 MC 4	25 26
	27,3	16367	2,65	MR 3I 140 - 112 MC 4	62,3		68,1	6552	2,24	MR 3I 101 - 132 S 4	25
	27,9 25,9	16020 17220	2,65 3,55	MR 3I 140 - 132 S 4 MR 3I 160 - 132 S 4	61 65,6		72,4 72,6	6164 6279	3,75 1,5	MR 3I 125 - 132 S 4 MR 2I 100 - 112 MC 4	23,5 23,4
	29,2 31,9	15298 13992	1,06 1,12	MR 3I 101 - 132 MB 6 MR 3I 101 - 132 MB 6	37,7 34,5		70,1 75,8	6502 5889	2,8 1,9	MR 2I 125 - 132 S 4 MR 3I 100 - 112 MC 4	24,3 22,4
	29,8	15000	0,95	MR 3I 101 - 112 MC 4	57,1		74,8	5965	1,9	MR 3I 100 - 132 S 4	22,7
	30,7 31	14514 14399	1,6 1,6	MR 3I 125 - 112 MC 4 MR 3I 125 - 132 S 4	55,3 54,8		75,8 74,8	5889 5965	2,65 2,5	MR 3I 101 - 112 MC 4 MR 3I 101 - 132 S 4	22,4 22,7
	30,7 31	14514 14399	2,12	MR 3I 126 - 112 MC 4 MR 3I 126 - 132 S 4	55,3 54,8		80,5 73,5	5543 6199	4 1,5	MR 3I 125 - 132 S 4 MR 2I 100 - 132 MB 6	21,1 15
	30,5	14625	3	MR 3I 140 - 112 MC 4 MR 3I 140 - 132 S 4	55,7		82,6	5405	1,06	MR 3I 80 - 112 MC 4	20,6
	30,7 29,6	14546 15062	2,8 4,25	MR 3I 140 - 132 S 4	55,4 57,4		82,6 83,7	5405 5330	1,4 2,12	MR 3I 81 - 112 MC 4 MR 3I 100 - 112 MC 4	20,6 20,3
	36,1 32,9	12363 13580	0,95 1,12	MR 3I 100 - 112 MC 4 MR 3I 101 - 112 MC 4	47,1 51,7		81,8 83,7	5456 5330	2,8	MR 3I 100 - 132 S 4 MR 3I 101 - 112 MC 4	20,8 20,3
	36,1	12363	1,25	MR 3I 101 - 112 MC 4	47,1		81,8	5456	2,8	MR 3I 101 - 132 S 4	20,8
	33,6 33,8	13293 13191	1,18 1,8	MR 3I 101 - 132 S 4 MR 3I 125 - 112 MC 4	50,6 50,2		89,3 88,2	5100 5165	2 2	MR 2I 100 - 132 MB 6 MR 2I 100 - 112 MC 4	12,3 19,3
	34,5 33,8	12930 13191	1,8 2,36	MR 3I 125 - 132 S 4 MR 3I 126 - 112 MC 4	49,3 50,2		89,3 88,2	5100 5165	2,36 2,36	MR 2I 101 - 132 MB 6 MR 2I 101 - 112 MC 4	12,3 19,3
	34,5 33,5	12930 13327	2,36 3,15	MR 3I 126 - 132 S 4 MR 3I 140 - 112 MC 4	49,3 50,8		89,5	5092	4	MR 2I 125 - 132 S 4	19
	33,9	13179	3,15	MR 3I 140 - 132 S 4	50,2		92 92	4852 4852	1,18 1,6	MR 3I 80 - 112 MC 4 MR 3I 81 - 112 MC 4	18,5 18,5
	39,5 39,5	11308 11308	1 1,4	MR 3I 100 - 112 MC 4 MR 3I 101 - 112 MC 4	43,1 43,1		94,6 94,6	4716 4716	2,36 3,15	MR 3I 100 - 132 S 4 MR 3I 101 - 132 S 4	18 18
	33,3	11300	1,4	MIT 31 101 - 112 IVIC 4	40,1]	3-1,0	4/10	0,10	WIT 31 101 - 132 3 4	10

¹⁾ Powers valid for continuous duty S1: **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3.

P ₁	n ₂	M ₂	fs	Gear reducer - Motor	i	\mathbf{P}_1	n ₂	M ₂	fs	Gear reducer - Motor	j
hp	rpm	lb in				hp	rpm	lb in			
1)				2)		1)				2)	
7,5	98,1	4645	2,24	MR 2I 100 - 112 MC 4	17,3	7,5	425	1072	2,12	MR 2I 64 - 112 MC 4	4
	98,1	4645	2,8	MR 2I 101 - 112 MC 4	17,3		429	1062	4	MR 2I 80 - 132 S 4	3,96
	106 106	4217 4217	1,32 1,8	MR 3I 80 - 112 MC 4 MR 3I 81 - 112 MC 4	16,1 16,1	10	8,94	68073	1,12	MR 3I 180 - 132 MC 6	123
	105	4268	2,65	MR 3I 100 - 132 S 4	16,3		11	55481	1,12	MR 3I 160 - 132 MC 6	100
	105	4268	3,55	MR 3I 101 - 132 S 4	16,3		10,9 10,7	55756 56857	1,5 1,32		101 103
	105 104	4355 4373	1,12 1,4	MR 2I 80 - 112 MC 4 MR 2I 81 - 132 MB 6	16,3 10,6		13,1	46340	1,32	MR 3I 160 - 160 M 6	83.8
	105	4355	1,4	MR 2I 81 - 112 MC 4	16,3		14,2	42758	1,25	MR 3I 160 - 132 M 4	119
	108 114	4205 4011	2,5 2,24	MR 2I 100 - 112 MC 4 MR 2I 100 - 132 S 4	15,7 15		13,1 13,8	46570 44047	1,8 1,7	MR 3I 180 - 160 M 6 MR 3I 180 - 132 M 4	84,2 123
	108	4205	3,35	MR 2I 101 - 112 MC 4	15,7		18	33762	1,25	MR 3I 140 - 132 MC 6	61
	117	3883	1,32	MR 2I 80 - 112 MC 4	14,5		18	33762	1,25	MR 3I 140 - 160 M 6	61
	117 124	3883 3686	1,7 2,8	MR 2I 81 - 112 MC 4 MR 2I 100 - 112 MC 4	14,5 13,8		17 16,9	35899 36077	1,7 2,24	MR 3I 160 - 132 M 4 MR 3I 180 - 132 M 4	100 101
	130	3504	1,5	MR 2I 80 - 132 MB 6	8.46		20,1	30346	0.95	MR 3I 126 - 132 MC 6	54.8
	131	3489	1,5	MR 2I 80 - 112 MC 4	13		19,9	30655	1,32	MR 3I 140 - 132 MC 6	55,4
	132 130	3459 3504	1,32	MR 2I 80 - 132 S 4 MR 2I 81 - 132 MB 6	12,9 8,46		19,9	30655	1,32	MR 3I 140 - 160 M 6	55,4
	131	3489	2	MR 21 81 - 132 MC 4	13		20,3 20,2	29985 30133	2 2,8	MR 3I 160 - 132 M 4 MR 3I 180 - 132 M 4	83,8 84,2
	137	3337	3,15	MR 2I 100 - 112 MC 4	12,5		22,3	27249	1,12	MR 3I 126 - 132 MC 6	49,3
	138 138	3300 3300	3 3,55	MR 2I 100 - 132 S 4 MR 2I 101 - 132 S 4	12,3 12,3		22,3	27249	1,12	MR 3I 126 - 160 M 6	49,3
	147	3105	1,7	MR 2I 80 - 132 MB 6	7,5		22,7 21,9	26792 27773	1 1,6	MR 3I 126 - 132 M 4 MR 3I 140 - 132 MC 6	74,8 50,2
	145	3151	1,6	MR 2I 80 - 112 MC 4	11,8		22,7	26792	1,4	MR 3I 140 - 132 M 4	74,8
	147 145	3105 3151	2,36 2,12	MR 2I 81 - 132 MB 6 MR 2I 81 - 112 MC 4	7,5 11,8		22,1 20,8	27510 29220	2,24 2,12	MR 3I 160 - 132 MC 6 MR 3I 160 - 160 M 6	49,7 52,8
	150	3038	3,55	MR 2I 100 - 112 MC 4	11,3		22,6	26925	3	MR 3I 180 - 132 MC 6	48,7
	154	2968	3,35	MR 2I 100 - 132 S 4	11,1		24,7	24629	0,95	MR 3I 125 - 132 MC 6	44,5
	170 161	2680 2831	1,12 1,9	MR 2I 64 - 112 MC 4 MR 2I 80 - 112 MC 4	10 10,6		24,7 24,5	24629 24816	1,25 1,8	MR 3I 126 - 132 MC 6 MR 3I 140 - 132 MC 6	44,5 44,9
	182	2509	2,12	MR 2I 80 - 112 MC 4	9,36		25,4	23991	1,7	MR 3I 140 - 160 M 6	43,4
	161 181	2829 2523	1,7	MR 2I 80 - 132 S 4 MR 2I 80 - 132 S 4	10,6 9,41		25,5	23848	2,5	MR 3I 160 - 132 MC 6	43,1
	173	2635	2,8	MR 2I 81 - 132 MB 6	6,36		25,9 28,4	23492 21434	3,75	MR 3I 180 - 160 M 6 MR 3I 125 - 132 M 4	42,5 59.9
	161	2831	2,5	MR 2I 81 - 112 MC 4	10,6		28,4	21434	1,4	MR 3I 126 - 132 M 4	59,9
	182 161	2509 2829	2,8 2,12	MR 2I 81 - 112 MC 4 MR 2I 81 - 132 S 4	9,36 10,6		27,9	21846	1,9	MR 3I 140 - 132 M 4	61
	181	2523	2,5	MR 2I 81 - 132 S 4	9,41		25,9 25,8	23482 23598	2,65 3,75	MR 3I 160 - 132 M 4 MR 3I 180 - 132 M 4	65,6 65,9
	164 170	2779 2687	3,75 4	MR 2I 100 - 112 MC 4 MR 2I 100 - 132 S 4	10,4 10		31	19635	1,12	MR 3I 125 - 132 M 4	54,8
	191	2388	1.06	MR 2I 63 - 112 MC 4	8.91		31,6	19275	1,6	MR 3I 126 - 160 M 6	34,8
	191	2388	1,32	MR 2I 64 - 112 MC 4	8,91		31 32,3	19635 18830	1,4 2,24	MR 3I 126 - 132 M 4 MR 3I 140 - 132 MC 6	54,8 34
	201 201	226 <i>7</i> 2267	2,24	MR 2I 80 - 132 S 4 MR 2I 81 - 132 S 4	8,46 8,46		30,7	19836	2	MR 3I 140 - 132 M 4	55,4
	186	2446	4,25	MR 2I 100 - 132 S 4	9,13		29,6	20539	3	MR 3I 160 - 132 M 4	57,4
	213	2144	1,18	MR 2I 63 - 112 MC 4	8		34,5 34,5	17632 17632	1,32 1,7	MR 3I 125 - 132 M 4 MR 3I 126 - 132 M 4	49,3 49,3
	213 214	2144 2129	1,6 2,5	MR 2I 64 - 112 MC 4 MR 2I 80 - 112 MC 4	8 7,95		36,2	16825	2,65	MR 3I 140 - 132 MC 6	30,4
	227	2009	2,65	MR 2I 80 - 132 S 4	7,5		33,9 34,2	17971 17801	2,36 3,55	MR 3I 140 - 132 M 4 MR 3I 160 - 132 M 4	50,2 49,7
	214 227	2129 2009	3,35 3,55	MR 2I 81 - 112 MC 4 MR 2I 81 - 132 S 4	7,95 7,5		36,9	16492	0,95	MR 3I 101 - 132 MC 6	29,8
	235	1938	1,32	MR 2I 63 - 112 MC 4	7,3		38,2	15936	1,5	MR 3I 125 - 132 M 4	44,5
	235	1938	1,8	MR 2I 64 - 112 MC 4	7,23		38,2 37,9	15936 16057	1,9 2,65	MR 3I 126 - 132 M 4 MR 3I 140 - 132 M 4	44,5 44,9
	238 238	1911 1911	2,8 3,75	MR 2I 80 - 112 MC 4 MR 2I 81 - 112 MC 4	7,13 7,13		39,4	15431	3,75	MR 3I 160 - 132 M 4	43,1
	259	1761	1,5	MR 2I 63 - 112 MC 4	6,57		41	14827	1	MR 3I 101 - 132 M 4	41,4
	259	1761	2	MR 2I 64 - 112 MC 4	6,57		45,1 42	13498 14483	1,18	MR 3I 101 - 132 M 4 MR 3I 125 - 132 M 4	37,7 40,5
	274 267	1661 1705	3,15 3	MR 2I 80 - 112 MC 4 MR 2I 80 - 132 S 4	6,2 6.36		42	14483	1,6 2,12	MR 3I 126 - 132 M 4	40,5 40,5
	302	1507	1,7	MR 2I 63 - 112 MC 4	6,36 5,63		41,6	14632	2,8	MR 3I 140 - 132 M 4	40,9
	302	1507	2,12	MR 2I 64 - 112 MC 4	5,63		45,3 49,3	13448 12346	1 25	MR 3I 140 - 132 M 4 MR 3I 101 - 132 M 4	37,6
	298	1530	3,35	MR 2I 80 - 132 S 4	5,71		49,3 45,7	13313	1,25 1,6	MR 3I 101 - 132 M 4 MR 3I 125 - 132 M 4	34,5 37,2
	336 336	1356 1356	1,9 2,12	MR 2I 63 - 112 MC 4 MR 2I 64 - 112 MC 4	5,06 5,06		50,9	11954	1,9	MR 3I 125 - 132 M 4	33,4
	343	1330	4	MR 2I 80 - 132 S 4	4,96		45,7 50,9	13313 11954	2,12 2,5	MR 3I 126 - 132 M 4 MR 3I 126 - 132 M 4	37,2 33,4
	425	1072	2	MR 2I 63 - 112 MC 4	4		49,9	12184	3,35	MR 3I 140 - 132 M 4	34
				<u> </u>			1	1			

¹⁾ Powers valid for continuous duty S1: **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3.
* Mounting position **B5R** (see table ch. 2b).

P ₁	n ₂	M_2 Ib in	fs	Gear reducer - Motor	i	P ₁	n ₂	M ₂	fs	Gear reducer - Motor	i
1)	Ipini	15 111		2)		1)				2)	
		10071	4.00		22.2	-	407	4550			10.5
10	57 57	10671 10671	1,06 1,5	MR 3I 100 - 132 M 4 MR 3I 101 - 132 M 4	29,8 29,8	10	137 138	4550 4500	3 2,65	MR 2I 101 - 132 M * 4 MR 2I 101 - 132 M 4	12,5 12,3
	56,3	10805	2,12	MR 3I 125 - 132 M 4	30,2		134	4640	4,5	MR 2I 125 - 132 M 4	12,7
	56,3 55,9	10805 10887	2,8 4	MR 3I 126 - 132 M 4 MR 3I 140 - 132 M 4	30,2 30,4		145	4296	1,18	MR 2I 80 - 132 M * 4	11,8
	57,9	10731	1,9	MR 2I 125 - 132 MC 6	19		147 145	4234 4296	1,7 1,5	MR 2I 81 - 132 MC 6 MR 2I 81 - 132 M * 4	7,5 11,8
	54,3	11445	1,6	MR 2I 125 - 160 M 6	20,3		154	4047	2,5	MR 2I 100 - 132 M 4	11,1
	61,2	9938	1,12	MR 3I 100 - 132 MC 6	18		154	4047	3,15	MR 2I 101 - 132 M 4	11,1
	61,2 62	9938 9819	1,6 2,36	MR 3I 101 - 132 MC 6 MR 3I 125 - 132 M 4	18 27,4		161 182	3861 3422	1,4 1,5	MR 2I 80 - 132 M * 4 MR 2I 80 - 132 M * 4	10,6 9,36
	62	9819	3,15	MR 3l 126 - 132 M 4	27,4		161	3858	1,25	MR 2I 80 - 132 M 4	10,6
	68,1	8934	1,25	MR 3I 100 - 132 M 4	25		181	3440	1,5	MR 2I 80 - 132 M 4	9,41
	68,1 72,4	8934 8405	1,6 2,65	MR 3I 101 - 132 M 4 MR 3I 125 - 132 M 4	25 23,5		161 182	3861 3422	1,8	MR 2I 81 - 132 M * 4 MR 2I 81 - 132 M * 4	10,6 9,36
	72,4	8405	3,55	MR 3I 126 - 132 M 4	23,5		161	3858	1,6	MR 2I 81 - 132 M 4	10,6
	72,6 72,4	8562 8585	1,12 2,65	MR 2I 100 - 132 M * 4 MR 2I 125 - 132 MC 6	23,4 15,2		181 170	3440 3664	1,9 2,8	MR 2I 81 - 132 M 4 MR 2I 100 - 132 M 4	9,41 10
	69,3	8963	2,24	MR 21 125 - 160 M 6	15,9		170	3664	3,75	MR 2I 101 - 132 M 4	10
	70,1	8866	2	MR 2I 125 - 132 M 4	24,3		201	3092	1,7	MR 2I 80 - 132 M 4	8,46
	74,8	8133	1,4 1,9	MR 3I 100 - 132 M 4 MR 3I 101 - 132 M 4	22,7		201	3092	2,24	MR 2I 81 - 132 M 4	8,46
	74,8 80,5	8133 7559	3	MR 3I 101 - 132 M 4 MR 3I 125 - 132 M 4	22,7 21,1		186 204	3335 3051	3,15 3,35	MR 2I 100 - 132 M 4 MR 2I 100 - 132 M 4	9,13 8,35
	73,5	8454	1,12	MR 2I 100 - 132 MC 6	15		213	2924	1,18	MR 2I 64 - 132 M * 4	8
	73,5 77,8	8454 7985	1,12 2,65	MR 2I 100 - 160 M 6 MR 2I 125 - 132 MC 6	15 14,1		227	2740	1,9	MR 2I 80 - 132 M 4	7,5
	81,8	7439	1,5	MR 3I 100 - 132 M 4	20,8		227	2740	2,5	MR 2I 81 - 132 M 4 MR 2I 64 - 132 M * 4	7,5
	81,8	7439	2	MR 3I 101 - 132 M 4	20,8		235 238	2642 2606	1,32	MR 2I 64 - 132 M * 4 MR 2I 80 - 132 M * 4	7,23 7,13
	89,3 89,3	6954 6954	1,5 1,5	MR 2I 100 - 132 MC 6 MR 2I 100 - 160 M 6	12,3 12,3		238	2606	2,65	MR 2I 81 - 132 M * 4	7,13
	88,2	7043	1,4	MR 2I 100 - 132 M * 4	19,3		236	2637	4	MR 2I 100 - 132 M 4	7,22
	89,3 89,3	6954 6954	1,8 1,8	MR 2I 101 - 132 MC 6 MR 2I 101 - 160 M 6	12,3 12,3		259 267	2401 2325	1,5 2,24	MR 2I 64 - 132 M * 4 MR 2I 80 - 132 M 4	6,57 6,36
	88,2	7043	1,7	MR 21 101 - 100 M	19,3		267	2325	3	MR 2I 81 - 132 M 4	6,36
	89,5	6943	2,8	MR 2I 125 - 132 M 4	19		302	2056	1,6	MR 2I 64 - 132 M * 4	5,63
	89,5 94,6	6943 6430	3,55 1,7	MR 2I 126 - 132 M 4 MR 3I 100 - 132 M 4	19 18		298 298	2087 2087	2,5 3,15	MR 2I 80 - 132 M 4 MR 2I 81 - 132 M 4	5,71 5,71
	94,6	6430	2,36	MR 3I 100 - 132 M 4	18		336	1849	1,6	MR 2I 64 - 132 M * 4	5,06
	99,3	6254	1,7	MR 2I 100 - 132 MC 6	11,1		343	1814	2,8	MR 2I 80 - 132 M 4	4,96
	99,3 98,1	6254 6334	1,7 1,7	MR 2I 100 - 160 M 6 MR 2I 100 - 132 M * 4	11,1 17,3		343	1814	3,15	MR 2I 81 - 132 M 4	4,96
	99,3	6254	2,12	MR 2I 101 - 132 MC 6	11,1		425 429	1462 1449	1,6	MR 2I 64 - 132 M * 4 MR 2I 80 - 132 M 4	4 3,96
	99,3 98,1	6254 6334	2,12 2,12	MR 2I 101 - 160 M 6 MR 2I 101 - 132 M * 4	11,1 17,3	12.5			1		
	100	6186	3,35	MR 2I 125 - 132 M 4	16,9	12,5	14,2 13,8	52450 54031	1,4	MR 3I 160 - 132 MB 4 MR 3I 180 - 132 MB 4	119 123
	105	5820	1,9	MR 3I 100 - 132 M 4	16,3		17	44036	1,4	MR 3I 160 - 132 MB 4	100
	105 105	5820 5938	2,65 1,06	MR 3I 101 - 132 M 4 MR 2I 81 - 132 M * 4	16,3 16,3		16,9	44255	1,9	MR 3I 180 - 132 MB 4	101
	110	5662	1,9	MR 2I 100 - 132 MC 6	10		20,3	36781	1,7	MR 3I 160 - 132 MB 4	83,8
	108 114	5735 5470	1,9 1,7	MR 2I 100 - 132 M * 4 MR 2I 100 - 132 M 4	15,7 15		20,2	36964	2,24	MR 3I 180 - 132 MB 4	84,2
	110	5662	2,5	MR 2I 101 - 132 MC 6	10		22,7 28,4	32865 26292	1,12 1,18	MR 3I 140 - 132 MB 4 MR 3I 126 - 132 MB 4	74,8 59,9
	110	5662 5735	2,5	MR 2I 101 - 160 M 6 MR 2I 101 - 132 M * 4	10 15.7		28,4	26798	1,18	MR 3I 140 - 132 MB 4	59,9 61
	108 112	5735 5555	2,5 4	MR 21 125 - 132 M 4	15,7 15,2		25,9	28804	2,12	MR 3I 160 - 132 MB 4	65,6
	117	5295	1	MR 2I 80 - 132 M * 4	14,5		25,8 31	28947 24086	3	MR 3I 180 - 132 MB 4 MR 3I 126 - 132 MB 4	65,9 54,8
	117 121	5295 5155	1,25 2,12	MR 2I 81 - 132 M * 4 MR 2I 100 - 132 MC 6	14,5 9,13		30,7	24332	1,18 1,7	MR 3I 126 - 132 MB 4 MR 3I 140 - 132 MB 4	54,8 55,4
	127	4895	2,12	MR 2I 100 - 132 MC 6 MR 2I 100 - 160 M 6	9,13 8,67		29,6	25195	2,5	MR 3I 160 - 132 MB 4	57,4
	124	5026	2,12	MR 2I 100 - 132 M * 4	13,8		29,8 34,5	25088 21628	3,35	MR 3I 180 - 132 MB 4 MR 3I 125 - 132 MB 4	57,1 49,3
	121 127	5155 4895	2,8 2,65	MR 2I 101 - 132 MC 6 MR 2I 101 - 160 M 6	9,13 8,67		34,5	21628	1,06 1,4	MR 3I 126 - 132 MB 4	49,3 49,3
	124	5026	2,65	MR 2I 101 - 132 M * 4	13,8		33,9	22044	1,9	MR 3I 140 - 132 MB 4	50,2
	120	5167	4	MR 2I 125 - 132 M 4	14,1		34,2 34,9	21836 21371	2,8 3,75	MR 3I 160 - 132 MB 4 MR 3I 180 - 132 MB 4	49,7 48,7
	131 132	4758 4717	1,12 0,95	MR 2I 80 - 132 M * 4 MR 2I 80 - 132 M 4	13 12,9		38,2	19549	1,18	MR 3I 125 - 132 MB 4	44,5
	131	4758	1,5	MR 2I 81 - 132 M * 4	13		38,2	19549	1,6	MR 3I 126 - 132 MB 4	44,5
	137 138	4550 4500	2,36 2,24	MR 2I 100 - 132 M * 4 MR 2I 100 - 132 M 4	12,5 12,3		37,9 39,4	19697 18929	2,12 3,15	MR 3I 140 - 132 MB 4 MR 3I 160 - 132 MB 4	44,9 43,1
	130	4000	۷,۷4	WIT 21 100 - 132 WI 4	12,3		35,4	10929	3,13	WIT 31 100 - 132 IVID 4	4J, I

¹⁾ Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3.

										Щт	
P ₁	n ₂	M_2 Ib in	fs	Gear reducer - Motor	i	P ₁	n ₂	M_2 Ib in	fs	Gear reducer - Motor	i
1)				2)		1)				2)	
12,5	45,1	16558	0,95	MR 3I 101 - 132 MB 4	37,7	12,5	298	2560	2	MR 2I 80 - 132 MB 4	5,71
	42 42	17766 17766	1,32 1,7	MR 3I 125 - 132 MB 4 MR 3I 126 - 132 MB 4	40,5 40,5		298	2560	2,5	MR 2I 81 - 132 MB 4	5,71
	41,6	17949	2,36	MR 3I 140 - 132 MB 4	40,9		343 343	2225 2225	2,36 2,5	MR 2I 80 - 132 MB 4 MR 2I 81 - 132 MB 4	4,96 4,96
	45,3 45,1	16497 16557	2,36 3,75	MR 3I 140 - 132 MB 4 MR 3I 160 - 132 MB 4	37,6 37,7		429 429	1777 1777	2,5 2,5	MR 2I 80 - 132 MB 4 MR 2I 81 - 132 MB 4	3,96 3,96
	49,3 45,7	15145 16330	1 1,32	MR 3I 101 - 132 MB 4 MR 3I 125 - 132 MB 4	34,5 37,2	15	13,1	68302	1,25	MR 3I 180 - 160 L 6	84,2
	50,9 45,7	14664 16330	1,5 1,7	MR 3I 125 - 132 MB 4 MR 3I 126 - 132 MB 4	33,4 37,2		13,8	64602	1,18	MR 3I 180 - 132 MC 4	123
	50,9 49,9	14664	2	MR 3I 126 - 132 MB 4	33,4		16,3 17	54724 52652	1,12	MR 3I 160 - 160 L 6 MR 3I 160 - 132 MC 4	67,4 100
	57	14946	2,8 1,18	MR 3I 140 - 132 MB 4 MR 3I 101 - 132 MB 4	29,8		16,9 16,5	52914 53958	1,6 1,4	MR 3I 180 - 132 MC 4 MR 3I 180 - 160 M 4	101 103
	56,3 56,3	13254 13254	1,7 2,24	MR 3I 125 - 132 MB 4 MR 3I 126 - 132 MB 4	30,2 30,2		20,3	43977	1,4	MR 3I 160 - 132 MC 4	83,8
	55,9	13354	3,15	MR 3I 140 - 132 MB 4	30,4		20,3 20,2	43977 44196	1,4 1,9	MR 3I 160 - 160 M 4 MR 3I 180 - 132 MC 4	83,8 84,2
	62 62	12045 12045	1,9 2,5	MR 3I 125 - 132 MB 4 MR 3I 126 - 132 MB 4	27,4 27,4		20,2 21,9	44196 40734	1,9	MR 3I 180 - 160 M 4 MR 3I 140 - 160 L 6	84,2 50,2
	68,1 68,1	10959 10959	1 1,32	MR 3I 100 - 132 MB 4 MR 3I 101 - 132 MB 4	25 25		25,4	35187	1,18	MR 3I 140 - 160 L 6	43,4
	72,4 72,4	10310	2,24	MR 3I 125 - 132 MB 4 MR 3I 126 - 132 MB 4	23,5 23,5		25,2 25,1	35409 35585	1,7 2,24	MR 3I 160 - 160 M 4 MR 3I 180 - 160 M 4	67,4 67,8
	65,2	11456	3,75	MR 3I 140 - 132 MB 4	26,1		28,5 28,4	31277 31436	0,95 0,95	MR 3I 126 - 160 L 6 MR 3I 126 - 132 MC 4	38,5 59,9
	70,1 74,8	10876	1,7 1,12	MR 2I 125 - 132 MB 4 MR 3I 100 - 132 MB 4	24,3		27,9	32041	1,32	MR 3I 140 - 132 MC 4	61
	74,8 80,5	9977 9273	1,5 2,5	MR 3I 101 - 132 MB 4 MR 3I 125 - 132 MB 4	22,7 21,1		27,9 27,5	32041 32488	1,32	MR 3I 140 - 160 M 4 MR 3I 160 - 160 L 6	61 40
	80,5	9273	3,35	MR 3I 126 - 132 MB 4	21,1		25,9 25,8	34440 34611	1,8 2,5	MR 3I 160 - 132 MC 4 MR 3I 180 - 132 MC 4	65,6 65,9
	81,8 81,8	9126 9126	1,18 1,7	MR 3I 100 - 132 MB 4 MR 3I 101 - 132 MB 4	20,8 20,8		28,5 31,6	31308 28270	2,65	MR 3I 180 - 160 M 4 MR 3I 126 - 160 L 6	59,6 34,8
	89,5 89,5	8517 8517	2,36 2,8	MR 2I 125 - 132 MB 4 MR 2I 126 - 132 MB 4	19 19		31 31,3	28799 28485	1	MR 3I 126 - 132 MC 4 MR 3I 140 - 160 L 6	54,8
	94,6	7888	1,4	MR 3I 100 - 132 MB 4	18		30,7	29092	1,5 1,4	MR 3I 140 - 132 MC 4	35,1 55,4
	94,6 100	7888 7588	1,9 2,8	MR 3I 101 - 132 MB 4 MR 2I 125 - 132 MB 4	18 16,9		30,7 29,6	29092 30124	1,4 2,12	MR 3I 140 - 160 M 4 MR 3I 160 - 132 MC 4	55,4 57,4
	100 105	7588	3,55 1,6	MR 2I 126 - 132 MB 4 MR 3I 100 - 132 MB 4	16,9 16,3		29,6 29,8	30190 29996	1,9 2,8	MR 3I 160 - 160 M 4 MR 3I 180 - 132 MC 4	57,5 57,1
	105 105 114	7139	2,12	MR 3I 101 - 132 MB 4 MR 2I 100 - 132 MB 4	16,3		32 34,5	27868 25860	3 1,18	MR 3I 180 - 160 M 4 MR 3I 126 - 132 MC 4	53,1 49,3
	112	6710 6814	1,4 3,15	MR 2I 100 - 132 MB 4	15 15,2		34,5	25860	1,18	MR 3I 126 - 160 M 4	49,3
	120	6338	3,35	MR 2I 125 - 132 MB 4 MR 2I 100 - 132 MB 4	14,1		33,9 33,9	26357 26357	1,6 1,6	MR 3I 140 - 132 MC 4 MR 3I 140 - 160 M 4	50,2 50,2
	138 138	5520 5520	1,8 2,12	MR 2I 101 - 132 MB 4	12,3 12,3		34,2 32,2	26108 27730	2,36 2,12	MR 3I 160 - 132 MC 4 MR 3I 160 - 160 M 4	49,7 52,8
	134 154	5691 4964	3,75	MR 2I 125 - 132 MB 4 MR 2I 100 - 132 MB 4	12,7		32,2 34,9	27689 25552	3,15	MR 3I 180 - 132 MC 4 MR 3I 180 - 132 MC 4	52,7 48,7
	154 148	4964 5144	2,65 4,25	MR 2I 101 - 132 MB 4 MR 2I 125 - 132 MB 4	11,1 11,5		38,2 39,6	23373 22538	1 1	MR 3I 125 - 132 MC 4 MR 3I 125 - 160 M 4	44,5 42,9
	161	4733	1,06	MR 2I 80 - 132 MB 4	10,6		38,2	23373	1,32	MR 3I 126 - 132 MC 4	44,5
	181 161	4220 4733	1,18 1,25	MR 2I 80 - 132 MB 4 MR 2I 81 - 132 MB 4	9,41		39,6 37,9	22538 23551	1,25 1,8	MR 3I 126 - 160 M 4 MR 3I 140 - 132 MC 4	42,9 44,9
	181 170	4220 4494	1,5 2,36	MR 2I 81 - 132 MB 4 MR 2I 100 - 132 MB 4	9,41		39,2 39,4	22768 22632	1,7 2,65	MR 3I 140 - 160 M 4 MR 3I 160 - 132 MC 4	43,4 43,1
	170	4494	3	MR 2l 101 - 132 MB 4	10		36,8 37	24255 24152	2,5 3,55	MR 3I 160 - 160 M 4 MR 3I 180 - 160 M 4	46,2 46
	201 201	3792 3792	1,4 1,8	MR 2I 80 - 132 MB 4 MR 2I 81 - 132 MB 4	8,46 8,46		42	21242	1,06	MR 3I 125 - 132 MC 4	40,5
	186 204	4091 3742	2,65 2,8	MR 2I 100 - 132 MB 4 MR 2I 100 - 132 MB 4	9,13 8,35		44,1 42	20238	1,12 1,5	MR 3I 125 - 160 M 4 MR 3I 126 - 132 MC 4	38,5 40,5
	186 204	4091 3742	3,55 3,75	MR 2I 101 - 132 MB 4 MR 2I 101 - 132 MB 4	9,13 8,35		44,1 41,6	20238 21461	1,5 2	MR 3I 126 - 160 M 4 MR 3I 140 - 132 MC 4	38,5 40,9
	227	3361	1,5	MR 2I 80 - 132 MB 4	7,5		45,3 43,3	19724 20627	2 2	MR 3I 140 - 132 MC 4 MR 3I 140 - 160 M 4	37,6 39,3
	227 236	3361 3235	2,12 3,35	MR 2I 81 - 132 MB 4 MR 2I 100 - 132 MB 4	7,5 7,22		45,1 42,5	19796 21021	3,15	MR 3I 160 - 132 MC 4 MR 3I 160 - 160 M 4	37,7 40
	267	2852	1,8	MR 2I 80 - 132 MB 4	6,36		45,7	19525	1,12	MR 3I 125 - 132 MC 4	37,2
	267 260	2852 2928	2,5 3,55	MR 2I 81 - 132 MB 4 MR 2I 100 - 132 MB 4	6,36 6,53		50,9 48,8	17533 18292	1,32 1,25	MR 3I 125 - 132 MC 4 MR 3I 125 - 160 M 4	33,4 34,8

¹⁾ Powers valid for continuous duty S1: **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3.

P ₁	n ₂	M_2 Ib in	fs	Gear reducer - Motor	i	P ₁	n ₂	M_2 Ib in	fs	Gear reducer - Motor	j
1)				2)		1)				2)	
15	45,7 50,9 48,8 49,9 48,4 49	19525 17533 18292 17870 18431 18223	1,4 1,7 1,7 2,36 2,24 3,15	MR 3I 126 - 132 MC 4 MR 3I 126 - 132 MC 4 MR 3I 126 - 160 M 4 MR 3I 140 - 132 MC 4 MR 3I 140 - 160 M 4 MR 3I 160 - 160 M 4	37,2 33,4 34,8 34 35,1 34,7	15	127 127 120 120 120	7179 7179 7578 7578 7578	1,4 1,8 2,8 2,8 3,35	MR 2I 100 - 160 L 6 MR 2I 101 - 160 L 6 MR 2I 125 - 132 MC 4 MR 2I 125 - 160 M 4 MR 2I 126 - 160 M 4	8,67 8,67 14,1 14,1 14,1
	57 56,3 53,7 56,3 53,7 55,9	15651 15847 16624 15847 16624 15967	1 1,4 1,4 1,9 1,8 2,65	MR 3I 101 - 132 MC 4 MR 3I 125 - 132 MC 4 MR 3I 125 - 160 M 4 MR 3I 126 - 132 MC 4 MR 3I 126 - 160 M 4 MR 3I 126 - 160 M 4 MR 3I 140 - 132 MC 4	29,8 30,2 31,7 30,2 31,7 30,4		138 138 140 138 138 134 134	6600 6600 6499 6600 6600 6805 6805	1,5 1,5 2,12 1,8 1,8 3,15 3,15	MR 2I 100 - 132 MC 4 MR 2I 100 - 160 M 4 MR 2I 101 - 160 L 6 MR 2I 101 - 132 MC 4 MR 2I 101 - 160 M 4 MR 2I 125 - 132 MC 4 MR 2I 125 - 160 M 4	12,3 12,3 7,85 12,3 12,3 12,7 12,7
	53,1 52 56	16795 17157 15939	2,5 3,55 3,75	MR 3I 140 - 160 M 4 MR 3I 160 - 132 MC 4 MR 3I 160 - 160 M 4	32 32,7 30,4		154 154 154	5936 5936 5917	1,7 1,7 2,36	MR 2I 100 - 132 MC 4 MR 2I 100 - 160 M 4 MR 2I 101 - 160 L 6	11,1 11,1 7,14
	62 58,4 62 58,4 57,8	14402 15280 14402 15280 15436	1,6 1,4 2,12 1,8 2,5	MR 3I 125 - 132 MC 4 MR 3I 125 - 160 M 4 MR 3I 126 - 132 MC 4 MR 3I 126 - 160 M 4 MR 3I 140 - 160 M 4	27,4 29,1 27,4 29,1 29,4		154 154 148 149	5936 5936 6150 6102	2,12 2,12 3,55 3,35	MR 2I 101 - 132 MC 4 MR 2I 101 - 160 M 4 MR 2I 125 - 132 MC 4 MR 2I 125 - 160 M 4	11,1 11,1 11,5 11,4
	63,8 63,5 68,1 72,4	13985 14351 13104 12328	3 3,75 1,12 1,8	MR 3I 140 - 160 M 4 MR 2I 160 - 160 L 6 MR 3I 101 - 132 MC 4 MR 3I 125 - 132 MC 4	26,6 17,3 25 23,5		181 161 181 170 170	5045 5659 5045 5374 5374	1 1,06 1,25 2 2	MR 2I 80 - 132 MC 4 MR 2I 81 - 132 MC 4 MR 2I 81 - 132 MC 4 MR 2I 100 - 132 MC 4 MR 2I 100 - 160 M 4	9,41 10,6 9,41 10 10
	65,1 72 72,4 65,1	13721 12402 12328 13721	1,6 1,8 2,5 2,12	MR 3I 125 - 160 M 4 MR 3I 125 - 160 M 4 MR 3I 126 - 132 MC 4 MR 3I 126 - 160 M 4	26,1 23,6 23,5 26,1		170 170 170 163 166	5374 5374 5374 5590 5479	2,5 2,5 3,75 3,75	MR 2I 101 - 132 MC 4 MR 2I 101 - 160 M 4 MR 2I 125 - 132 MC 4 MR 2I 125 - 160 M 4	10 10 10,4 10,2
	72 65,2 72,1 71,4 70,1	12402 13697 12376 12496 13004	2,36 3,15 3,15 3,35 1,4	MR 3I 126 - 160 M 4 MR 3I 140 - 132 MC 4 MR 3I 140 - 132 MC 4 MR 3I 140 - 160 M 4 MR 2I 125 - 132 MC 4	23,6 26,1 23,6 23,8 24,3		201 201 186 204	4534 4534 4892 4474	1,12 1,5 2,12 2,36	MR 2I 80 - 132 MC 4 MR 2I 81 - 132 MC 4 MR 2I 100 - 132 MC 4 MR 2I 100 - 132 MC 4	8,46 8,46 9,13 8,35
	74,8 80,5 79,2 80,5	11929 11087 11271 11087	1,25 2 2 2,8	MR 3I 101 - 132 MC 4 MR 3I 125 - 132 MC 4 MR 3I 125 - 160 M 4 MR 3I 126 - 132 MC 4	22,7 21,1 21,5 21,1		196 186 204 196 184	4645 4892 4474 4645 4952	2,12 2,8 3,15 2,8 4,25	MR 2I 100 - 160 M 4 MR 2I 101 - 132 MC 4 MR 2I 101 - 132 MC 4 MR 2I 101 - 160 M 4 MR 2I 125 - 160 M 4	8,67 9,13 8,35 8,67 9,24
	79,2 81,8 81,8 83,3 89,3	11271 10911 10911 10720 10199	2,65 1 1,4 4	MR 3I 126 - 160 M 4 MR 3I 100 - 132 MC 4 MR 3I 101 - 132 MC 4 MR 3I 140 - 160 M 4 MR 2I 100 - 160 L 6	21,5 20,8 20,8 20,4 12,3		227 227 217 217	4018 4018 4205 4205	1,32 1,7 2,5 3,15	MR 2I 80 - 132 MC 4 MR 2I 81 - 132 MC 4 MR 2I 100 - 160 M 4 MR 2I 101 - 160 M 4	7,5 7,5 7,85 7,85
	89,3 89,5 83,9 86,6	10199 10199 10184 10861 10516	1,18 2 1,7 2,65	MR 2I 100 - 160 L 6 MR 2I 125 - 132 MC 4 MR 2I 125 - 160 M 4 MR 2I 126 - 160 L 6	12,3 12,3 19 20,3 12,7		236 238 236 238	3868 3828 3868 3828	2,65 2,65 3,55 3,55	MR 2I 100 - 132 MC 4 MR 2I 100 - 160 M 4 MR 2I 101 - 132 MC 4 MR 2I 101 - 160 M 4	7,22 7,14 7,22 7,14
	89,5 89,5 94,6 94,6	10184 10184 9431 9431	2,36 3,35 1,18 1,6	MR 2I 126 - 132 MC 4 MR 2I 140 - 132 MC 4 MR 3I 100 - 132 MC 4 MR 3I 101 - 132 MC 4	19 19 18 18		267 267 260 260	3410 3410 3500 3502	1,5 2 3 3	MR 2I 80 - 132 MC 4 MR 2I 81 - 132 MC 4 MR 2I 100 - 132 MC 4 MR 2I 100 - 160 M 4	6,36 6,36 6,53 6,53
	92,5 103 92,5 103	9648 8677 9648 8677	2,36 2,65 3,15 3,35	MR 3I 125 - 160 M 4 MR 3I 125 - 160 M 4 MR 3I 126 - 160 M 4 MR 3I 126 - 160 M 4 MR 3I 126 - 160 M 4	18,4 16,5 18,4 16,5		298 298 301 343	3061 3061 3027 2660	1,7 2,12 3,35 2	MR 2I 80 - 132 MC 4 MR 2I 81 - 132 MC 4 MR 2I 100 - 160 M 4 MR 2I 80 - 132 MC 4	5,71 5,71 5,65 4,96
	99,3 99,3 100 100	9173 9173 9073 9073	1,12 1,5 2,36 3	MR 2I 100 - 160 L 6 MR 2I 101 - 160 L 6 MR 2I 125 - 132 MC 4 MR 2I 126 - 132 MC 4	11,1 11,1 16,9 16,9		343 325 333 429	2660 2805 2739 2125	2,12 3,15 3,75 2	MR 2I 81 - 132 MC 4 MR 2I 100 - 132 MC 4 MR 2I 100 - 160 M 4 MR 2I 80 - 132 MC 4	4,96 5,23 5,11 3,96
	105 105 110 114	8536 8536 8305 8023	1,32 1,8 1,32 1,12	MR 3I 100 - 132 MC 4 MR 3I 101 - 132 MC 4 MR 2I 100 - 160 L 6 MR 2I 100 - 132 MC 4	16,3 16,3 10 15		429 415	2125 2195	2,12 4	MR 2I 81 - 132 MC 4 MR 2I 100 - 160 M 4	3,96 4,1
	114 110 112 107	8023 8305 8147 8506	1,12 1,12 1,7 2,65 2,36	MR 2I 100 - 132 MC 4 MR 2I 101 - 160 M 4 MR 2I 125 - 132 MC 4 MR 2I 125 - 160 M 4	15 15 10 15,2 15,9	20	16,5 20,3 20,7 20,2	73580 59969 58730 60267	1 1 1,5 1,4	MR 3I 180 - 160 L 4 MR 3I 160 - 160 L 4 MR 3I 180 - 180 L 6 MR 3I 180 - 160 L 4	103 83,8 53,1 84,2
	112 107 107	8147 8506 8506	3,35 2,8 4	MR 2I 126 - 132 MC 4 MR 2I 126 - 160 M 4 MR 2I 140 - 160 M 4	15,2 15,9 15,9		25,2 25,9 25,1	48286 46984 48525	1,25 1,8 1,7	MR 3I 160 - 160 L 4 MR 3I 180 - 180 L 6 MR 3I 180 - 160 L 4	67,4 42,5 67,8

¹⁾ Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3.

8 - Manufacturing programme (gearmotors)

P ₁	n ₂	M ₂	fs	Gear reducer - Motor	i	P ₁	n ₂	M ₂	<i>f</i> s	Gear reducer - Motor	j
hp	rpm	lb in				hp	rpm	lb in			
1)				2)		1)				2)	
20	27,9	43692	0,95	MR 3I 140 - 160 L 4 MR 3I 160 - 180 L 6	61 40	20	134 134	9279	2,36 3	MR 2I 125 - 160 L 4 MR 2I 126 - 160 L 4	12,7
	27,5 28,5	44301 42693	1,4 1,9	MR 3I 180 - 160 L 4	59,6		154	9279	1,25	MR 21 120 - 160 L 4	12,7
	30,7	39671	1	MR 3I 140 - 160 L 4	55,4		154	8094	1,6	MR 21 100 - 160 L 4	11,1
	29,6 32	41168 38002	1,4 2,24	MR 3I 160 - 160 L 4 MR 3I 180 - 160 L 4	57,5 53,1		149 149	8320 8320	2,5 3,15	MR 2I 125 - 160 L 4 MR 2I 126 - 160 L 4	11,4 11,4
	33,9	35942	1,18	MR 3I 140 - 160 L 4	50,2		170	7328	1,4	MR 2I 100 - 160 L 4	10
	32,2	37814	1,6	MR 3I 160 - 160 L 4	52,8		170	7328	1,9	MR 2I 101 - 160 L 4	10
	39,2	31047 33076	1,25	MR 3I 140 - 160 L 4	43,4		166 166	7471 7471	2,8 3,75	MR 2I 125 - 160 L 4 MR 2I 126 - 160 L 4	10,2 10,2
	36,8 37	32935	1,9 2,65	MR 3I 160 - 160 L 4 MR 3I 180 - 160 L 4	46,2 46		196	6334	1,6	MR 2I 100 - 160 L 4	8,67
	40	30401	2,8	MR 3I 180 - 160 L 4	42,5		196	6334	2	MR 2I 101 - 160 L 4	8,67
	44,1 43,3	27598 28128	1,06 1,5	MR 3I 126 - 160 L 4 MR 3I 140 - 160 L 4	38,5 39,3		184 202	6753 6137	3,15 3,35	MR 2I 125 - 160 L 4 MR 2I 125 - 160 L 4	9,24 8,4
	42,5	28665	2,12	MR 3I 160 - 160 L 4	40		217	5735	1,8	MR 2I 100 - 160 L 4	7,85
	43,4	28056	2,8	MR 3I 180 - 160 L 4	39,2		217	5735	2,36	MR 2I 101 - 160 L 4	7,85
	48,8 48,4	24944 25133	1,25 1,7	MR 3I 126 - 160 L 4 MR 3I 140 - 160 L 4	34,8 35,1		238 238	5221 5221	2 2,65	MR 2I 100 - 160 L 4 MR 2I 101 - 160 L 4	7,14 7,14
	49	24849	2,36	MR 3I 160 - 160 L 4	34,7		237	5253	4	MR 2I 125 - 160 L 4	7,19
	48,7 53,7	24973 22669	3,35	MR 3I 180 - 160 L 4 MR 3I 125 - 160 L 4	34,9 31,7		260	4775	2,12	MR 2I 100 - 160 L 4	6,53
	53,7 53,7	22669	1,32	MR 3I 126 - 160 L 4	31,7		260 263	4775 4725	3 4,5	MR 2I 101 - 160 L 4 MR 2I 125 - 160 L 4	6,53 6,46
	53,1 56	22903 21735	1,8 2,8	MR 3I 140 - 160 L 4 MR 3I 160 - 160 L 4	32 30,4		301	4127	2,5	MR 2I 100 - 160 L 4	5,65
	56,2	21643	4	MR 3I 180 - 160 L 4	30,4		301	4127	3,15	MR 2I 101 - 160 L 4	5,65
	58	21409	2,36	MR 2I 160 - 180 L 6	19		333 333	3736 3736	2,8 3,15	MR 2I 100 - 160 L 4 MR 2I 101 - 160 L 4	5,11 5,11
	58,4 59,9	20837	1,06 1,5	MR 3I 125 - 160 L 4 MR 3I 126 - 180 L 6	29,1 18,4		415	2993	2,8	MR 2I 100 - 160 L 4	4,1
	58,4	20837	1,32	MR 3I 126 - 160 L 4	29,1	25	25,2	59552	1	MR 3I 160 - 180 M 4	67,4
	57,8 63,8	21050 19071	1,8 2,12	MR 3I 140 - 160 L 4 MR 3I 140 - 160 L 4	29,4 26,6	-	25,1	59848	1,4	MR 3I 180 - 180 M 4	67,8
	63,5	19570	2,8	MR 2I 160 - 180 L 6	17,3		28,5	52655	1,5	MR 3I 180 - 180 M 4	59,6
	65,1	18711	1,18	MR 3I 125 - 160 L 4	26,1		30,4	49339	1,25	MR 3I 160 - 200 LR 6	36,2
	72 65,1	16912 18711	1,32 1,5	MR 3I 125 - 160 L 4 MR 3I 126 - 160 L 4	23,6 26,1		29,6 32	50774 46869	1,12 1,8	MR 3I 160 - 180 M 4 MR 3I 180 - 180 M 4	57,5 53,1
	72	16912	1,8	MR 3I 126 - 160 L 4	23,6		35,1	42760	1,5	MR 3I 160 - 200 LR 6	31,3
	71,4 64,6	17040 18837	2,5 3,15	MR 3I 140 - 160 L 4 MR 3I 160 - 160 L 4	23,8 26,3		32,2	46637	1,32	MR 3I 160 - 180 M 4	52,8
	72	16908	3,55	MR 3I 160 - 160 L 4	23,6		39,2 36,8	38292 40793	1,06 1,5	MR 3I 140 - 180 M 4 MR 3I 160 - 180 M 4	43,4 46,2
	79,2 79,2	15370 15370	1,5 1,9	MR 3I 125 - 160 L 4 MR 3I 126 - 160 L 4	21,5 21,5		37	40620	2,12	MR 3I 180 - 180 M 4	46
	79,2	15723	3,75	MR 2I 160 - 180 L 6	13,9		40	37495	2,24	MR 3I 180 - 180 M 4	42,5
	83,3	14618	2,8	MR 3I 140 - 160 L 4	20,4		43,3 42,5	34692 35354	1,18 1,8	MR 3I 140 - 180 M 4 MR 3I 160 - 180 M 4	39,3 40
	86,1 83,9	14433 14811	1,4 1,25	MR 2I 125 - 180 L 6 MR 2I 125 - 160 L 4	12,8 20,3		43,4	34602	2,24	MR 3I 180 - 180 M 4	39,2
	86,1	14433	1,7	MR 2I 126 - 180 L 6	12,8		48,8	30764	1	MR 3I 126 - 180 M 4	34,8
	86,1 89,7	14433 13853	2,36 3,55	MR 2I 140 - 180 L 6 MR 2I 160 - 160 L 4	12,8 19		48,4 49	30998 30647	1,4 1,9	MR 3I 140 - 180 M 4 MR 3I 160 - 180 M 4	35,1 34,7
	92,5	13156	1,7	MR 3I 125 - 160 L 4	18,4		48,7	30799	2,65	MR 3I 180 - 180 M 4	34,9
	103	11832	1,9	MR 3I 125 - 160 L 4	16,5		53,7 53,1	27959 28247	1,12 1,5	MR 3I 126 - 180 M 4 MR 3I 140 - 180 M 4	31,7 32
	92,5 103	13156 11832	2,24 2,5	MR 3I 126 - 160 L 4 MR 3I 126 - 160 L 4	18,4 16,5		56	26807	2,24	MR 3I 160 - 180 M 4	30,4
	92,2	13208	3	MR 3I 140 - 160 L 4	18,4		56,2	26693	3,15	MR 3I 180 - 180 M 4	30,2
	96,6 96,6	12859 12859	1,6 2	MR 2I 125 - 180 L 6 MR 2I 126 - 180 L 6	11,4 11,4		58,4 57,8	25699 25961	1,06 1,5	MR 3I 126 - 180 M 4 MR 3I 140 - 180 M 4	29,1 29,4
	95,7	12990	2,8	MR 2I 140 - 180 L 6	11,5		63,8	23520	1,7	MR 3I 140 - 180 M 4	26,6
	98,1 107	12663 11599	4,25 1,7	MR 2I 160 - 160 L 4 MR 2I 125 - 160 L 4	17,3 15,9		62,3	24098	3,55	MR 3I 180 - 180 M 4	27,3
	108	11547	2,5	MR 2I 126 - 180 L 6	10,2		65,1 72	23077 20858	0,95 1,06	MR 3I 125 - 180 M 4 MR 3I 125 - 180 M 4	26,1 23,6
	107 107	11599 11599	2,12	MR 2I 126 - 160 L 4 MR 2I 140 - 160 L 4	15,9 15,9		65,1	23077	1,25	MR 3I 126 - 180 M 4	26,1
	120	10334	2	MR 2I 125 - 160 L 4	14,1		72 71,4	20858 21016	1,4	MR 3I 126 - 180 M 4 MR 3I 140 - 180 M 4	23,6 23,8
	120	10334	2,5	MR 2l 126 - 160 L 4	14,1		64,6	23233	2,65	MR 3I 160 - 180 M 4	26,3
	119 138	10439	3,55 1,12	MR 2I 140 - 160 L 4 MR 2I 100 - 160 L 4	14,3		72 79,2	20854 18956	3 1,18	MR 3I 160 - 180 M 4 MR 3I 125 - 180 M 4	23,6 21,5
	138	9000	1,12	MR 21 100 - 160 L 4	12,3 12,3		79,2	18956	1,10	MR 3I 126 - 180 M 4	21,5
							 	1			

¹⁾ Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3. * Mounting position **B5R** (see table ch. 2b).

P ₁	n ₂	M ₂	<i>f</i> s	Gear reducer - Motor	i	\mathbf{P}_1	n ₂	M ₂	fs	Gear reducer - Motor	i
hp	rpm	lb in				hp	rpm	lb in			
1)				2)		1)				2)	
25	83,3 82,8	18029 18125	2,36 3,35	MR 3I 140 - 180 M 4 MR 3I 160 - 180 M 4	20,4 20,5	30	53,1 56	33591 31879	1,25 1,9	MR 3I 140 - 180 L 4 MR 3I 160 - 180 L 4	32 30,4
	89,7	17086	2,8	MR 2I 160 - 180 M 4	19		56,2	31743	2,65	MR 3I 180 - 180 L 4	30,4
	92,5	16226	1,4	MR 3I 125 - 180 M 4	18,4		57,8	30873	1,25	MR 3I 140 - 180 L 4	29,4
	103 92,5	14593 16226	1,5 1,8	MR 3I 125 - 180 M 4 MR 3I 126 - 180 M 4	16,5 18,4		63,8 62,3	27970 28657	1,5	MR 3I 140 - 180 L 4 MR 3I 180 - 180 L 4	26,6 27,3
	103	14593	2	MR 3I 126 - 180 M 4	16,5		65,1	27442	1,06	MR 3I 126 - 180 L 4	26,1
	92,2 98,1	16289 15617	2,36 3,35	MR 3I 140 - 180 M	18,4 17,3		72	24804	1,18	MR 3I 126 - 180 L 4	23,6
	104	14708	1,25	MR 2I 125 - 180 M 4	16,3		71,4 64,6	24992 27628	1,7	MR 3I 140 - 180 L 4 MR 3I 160 - 180 L 4	23,8 26,3
	107	14345	4	MR 2I 160 - 180 M 4	15,9		72	24799	2,5	MR 3I 160 - 180 L 4	23,6
	123 123	12411 12411	1,7 2,12	MR 2I 125 - 200 LR 6 MR 2I 126 - 200 LR 6	8,91 8,91		71,5 70,4	24983 25886	3,15	MR 3I 180 - 180 L 4 MR 2I 160 - 200 L 6	23,8 15,6
	122	12538	3	MR 2I 140 - 200 LR 6	9		68,3	26666	2,65	MR 2I 180 - 200 L 6	16,1
	122 133	12547 11518	4,5 1,7	MR 2I 160 - 180 M 4 MR 2I 125 - 180 M 4	13,9 12,8		79,2 79,2	22542 22542	1,32	MR 3l 125 - 180 L 4 MR 3l 126 - 180 L 4	21,5 21,5
	133	11518	2,12	MR 2I 126 - 180 M 4	12,8		77	23662	2,24	MR 2l 160 - 200 L 6	14,3
	133	11518	3	MR 2I 140 - 180 M 4	12,8		74,3	24538	3,15	MR 2l 180 - 200 L 6	14,8
	149 149	10262 10262	2 2,5	MR 2I 125 - 180 M 4 MR 2I 126 - 180 M 4	11,4 11,4		83,3 82,8	21554	2,8	MR 3I 140 - 180 L 4 MR 3I 160 - 180 L 4	20,4 20,5
	148	10366	3,55	MR 2I 140 - 180 M 4	11,5		86,1 86,1	21169 21169	0,95	MR 2I 125 - 200 L 6 MR 2I 126 - 200 L 6	12,8 12,8
	176 176	8687 8687	1,12 1,4	MR 2I 100 - 180 M 4 MR 2I 101 - 180 M 4	9,64 9,64		86,1	21169	1,7	MR 2I 140 - 200 L 6	12,8
	166	9215	2,24	MR 2I 125 - 180 M 4	10,2		89,7 87,1	20318	2,36	MR 2I 160 - 180 L 4 MR 2I 180 - 180 L 4	19 19,5
	166	9215	3	MR 2I 126 - 180 M 4	10,2		92,5	19295	1,18	MR 3I 125 - 180 L 4	18,4
	196 196	7812 7812	1,32 1,6	MR 2I 100 - 180 M 4 MR 2I 101 - 180 M 4	8,67 8,67		103	17353	1,32	MR 3I 125 - 180 L 4	16,5
	184 202	8329 7569	2,5 2,8	MR 2I 125 - 180 M 4 MR 2I 125 - 180 M 4	9,24 8,4		92,5	19295 17353	1,5 1,7	MR 3I 126 - 180 L 4 MR 3I 126 - 180 L 4	18,4 16,5
	184	8329	3,35	MR 2I 126 - 180 M 4	9,24		92,2	19371	2	MR 3I 140 - 180 L 4	18,4
	202	7569	3,75	MR 2I 126 - 180 M 4	8,4		98,1 94,6	18572 19260	2,8	MR 2l 160 - 180 L 4 MR 2l 180 - 180 L 4	17,3 18
	217 217	7073 7073	1,5 1,9	MR 2I 100 - 180 M 4 MR 2I 101 - 180 M 4	7,85 7,85		108	16935	1,25	MR 2I 125 - 200 L 6	10,2
	238	6439	1,6	MR 2I 100 - 180 M 4	7,14		104 108	17491 16935	1 1,7	MR 2I 125 - 180 L 4 MR 2I 126 - 200 L 6	16,3 10,2
	238 237	6439 6479	2,12 3,35	MR 2I 101 - 180 M 4 MR 2I 125 - 180 M 4	7,14 7,19		106	17261	2,36	MR 2I 140 - 200 L 6	10,4
	260	5889	1,8	MR 2I 100 - 180 M 4	6,53		107 123	17059 14760	3,35	MR 2I 160 - 180 L 4 MR 2I 125 - 200 L 6	15,9 8,91
	260 263	5889 5827	2,36 3,55	MR 2I 101 - 180 M 4 MR 2I 125 - 180 M 4	6,53		123	14760	1,8	MR 2I 126 - 200 L 6	8,91
	301	5090	2	MR 2I 100 - 180 M 4	6,46 5,65		122 122	14910 14921	2,5	MR 2I 140 - 200 L 6 MR 2I 160 - 180 L 4	9 13,9
	301	5090	2,5	MR 2I 101 - 180 M 4	5,65		138	13253	1,6	MR 2I 125 - 200 L 6	8
	333 333	4607 4607	2,24	MR 2I 100 - 180 M 4 MR 2I 101 - 180 M 4	5,11		133	13697	1,4	MR 2I 125 - 180 L 4	12,8
	415	3692	2,5	MR 2I 100 - 180 M 4	5,11 4,1		138 133	13253 13697	2,12	MR 2I 126 - 200 L 6 MR 2I 126 - 180 L 4	8 12,8
	415	3692	2,5	MR 2I 101 - 180 M 4	4,1		135	13508	2,8	MR 2I 140 - 200 L 6	8,15
30	23,6	75734	1,06	MR 3I 180 - 200 L 6	46,7		133 141	13697 12932	2,5 4,5	MR 2I 140 - 180 L 4 MR 2I 160 - 180 L 4	12,8 12,1
	25,1	71170	1,12	MR 3I 180 - 180 L 4	67,8		149	12203	1,7	MR 2l 125 - 180 L 4	11,4
	26,5 28,5	67412 62617	1,32 1,32	MR 3I 180 - 200 L 6 MR 3I 180 - 180 L 4	41,5 59,6		152 149	11979 12203	2,36	MR 2I 126 - 200 L 6 MR 2I 126 - 180 L 4	7,23 11,4
	30,4	58673	1,06	MR 3I 160 - 200 L 6	36,2		148	12328	3	MR 2I 140 - 180 L 4	11,5
	29,6 32	60380	0,95	MR 3I 160 - 180 L 4	57,5		166 166	10958 10958	1,9 2,5	MR 2I 125 - 180 L 4 MR 2I 126 - 180 L 4	10,2 10,2
	35,1	55736 50850	1,5 1,25	MR 3I 180 - 180 L 4 MR 3I 160 - 200 L 6	53,1 31,3		163	11169	3,55	MR 21 140 - 180 L 4	10,2
	32,2	55461	1,06	MR 3I 160 - 180 L 4	52,8		184	9904	2,12	MR 2I 125 - 180 L 4	9,24
	33,1 36,8	53929 48511	1,6 1,32	MR 3I 180 - 200 L 6 MR 3I 160 - 180 L 4	33,2 46,2		202 184	9001	2,36 2,8	MR 2l 125 - 180 L 4 MR 2l 126 - 180 L 4	8,4 9,24
	37	48304	1,8	MR 3I 180 - 180 L 4	46		202	9001	3,15	MR 2I 126 - 180 L 4	8,4
	40	44589	1,9	MR 3I 180 - 180 L 4	42,5		237 237	7705 7705	2,8 3,75	MR 2I 125 - 180 L 4 MR 2I 126 - 180 L 4	7,19 7,19
	43,3 42,5	41255 42043	1,5	MR 3I 140 - 180 L 4 MR 3I 160 - 180 L 4	39,3 40		263	6929	3	MR 2I 125 - 180 L 4	6,46
	43,4	41148	1,9	MR 3I 180 - 180 L 4	39,2		333	5479	3,15	MR 2I 125 - 180 L 4	5,11
	48,4 49	36862 36446	1,12 1,6	MR 3I 140 - 180 L 4 MR 3I 160 - 180 L 4	35,1 34,7	40	36,4	66824	1,18	MR 3I 180 - 200 L 4	46,7
	48,7	36626	2,24	MR 3I 180 - 180 L 4	34,7		40,9	59481	1,4	MR 3I 180 - 200 L 4	41,5
				<u> </u>			+				

¹⁾ Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately. 2) For complete designation when ordering, see ch. 3.

8 - Manufacturing programme (gearmotors)

P 1	n ₂	M_2	fs	Gear reducer - Motor	i	P ₁	n ₂	M_2	fs	Gear reducer - Motor	i
·	,			2)						2)	
1) IO	47	51770	1,18	2) MR 3I 160 - 200 L 4	36.2	50	79,6	37718	2,24	2) MR 3I 180 - 225 S 4	21,4
U	47,2	51550	1,6	MR 3I 180 - 200 L 4	36	30	82,6	36364	1,6	MR 3I 160 - 225 S 4	20,6
	51,2 54,3	47585 44868	1,7 1,4	MR 3I 180 - 200 L 4 MR 3I 160 - 200 L 4	33,2		92	32641	1,8	MR 3I 160 - 225 S 4	18,5
	55,4	43913	1,4	MR 3I 180 - 200 L 4	30,7		91,3	32883	2,36	MR 3I 180 - 225 S 4 MR 3I 160 - 225 S 4	18,6
*	63,8	38141	1,06	MR 3I 140 - 200 L * 4	26,6		106 133	28369	2,12	MR 3I 160 - 225 S 4 MR 2I 160 - 225 S 4	16,1 12.8
	62,6 62,3	38894 39087	1,5 2,12	MR 3I 160 - 200 L 4 MR 3I 180 - 200 L 4	27,2 27,3		129	23704	2,8	MR 2I 180 - 225 S 4	13,1
*	71,4	34080	1,25	MR 3I 140 - 200 L * 4	23,8		141 146	21812	3,35 2,5	MR 2I 180 - 225 S 4 MR 2I 160 - 225 S 4	12,1
	71,6 71,9	34021 33876	1,8 2,5	MR 3I 160 - 200 L 4 MR 3I 180 - 200 L 4	23,8		159	19320	2,8	MR 2I 160 - 225 S 4	10,7
	79,6	30582	2,8	MR 3I 180 - 200 L 4	21,4		158 170	19415 18029	1,9	MR 2I 180 - 225 S 4 MR 2I 140 - 225 S 4	10,8
*	83,3	29236 29484	1,4 2	MR 3I 140 - 200 L * 4 MR 3I 160 - 200 L 4	20,4		181	16899	3,35	MR 2I 160 - 225 S 4	9,3
*	82,6 92,2	26415	1,5	MR 3I 140 - 200 L * 4	20,6	*	189	16226	2,24	MR 2I 140 - 225 S 4	9
	92	26465	2,24	MR 3I 160 - 200 L 4	18,5	*	182 208	16827	2,5	MR 2I 180 - 225 S 4 MR 2I 140 - 225 S 4	9,3
	91,3 106	26662	2,8 2,65	MR 3I 180 - 200 L 4	18,6		209	14645	3,75	MR 2I 160 - 225 S 4	8,1
	109	22841	2,12	MR 2l 160 - 200 L 4	15,6	*	233	13135	2,5	MR 2I 140 - 225 S 4	7,2
	106 115	23529 21651	3,35	MR 2I 180 - 200 L 4 MR 2I 180 - 200 L 4	16,1 14,8	*	272 301	11268 10181	2,5 2,5	MR 2I 140 - 225 S 4 MR 2I 140 - 225 S 4	6,2 5,6
	119	20878	2,5	MR 2I 160 - 200 L 4	14,3	60 *	40,9	89221	0,95	MR 3I 180 - 225 M 4	41,5
	133 133	18678 18678	1,06 1,32	MR 2I 125 - 200 L 4 MR 2I 126 - 200 L 4	12,8 12,8	*	47,2	77325	1,06	MR 3I 180 - 225 M 4	36
	133	18678	1,8	MR 2I 140 - 200 L 4	12,8	*	51,2	71377	1,18	MR 3I 180 - 225 M 4	33,2
	130 129	19177 19272	2,8	MR 2I 160 - 200 L 4 MR 2I 180 - 200 L 4	13,1	*	55,4 62,6	65870 58342	1,18	MR 3I 180 - 225 M 4 MR 3I 160 - 225 M 4	30,7
	149	16641	1,25	MR 2I 125 - 200 L 4	11,4	*	62,3	58631	1,4	MR 3I 180 - 225 M 4	27,3
	149 148	16641 16810	1,5 2,12	MR 2I 126 - 200 L 4 MR 2I 140 - 200 L 4	11,4	*	71,6 71,9	51031 50814	1,18	MR 3I 160 - 225 M 4 MR 3I 180 - 225 M 4	23,8 23,7
	148	16774	3,35	MR 2I 160 - 200 L 4	11,5	*	79,6	45873	1,7	MR 3I 180 - 225 M 4	21,4
	166 166	14943	1,4 1,8	MR 2I 125 - 200 L 4 MR 2I 126 - 200 L 4	10,2	*	82,6	44227	1,32	MR 3I 160 - 225 M 4	20,6
	163	15230	2,5	MR 2I 140 - 200 L 4	10,4	*	92	39698	1,5	MR 3I 160 - 225 M 4	18,5
	171 191	14537	1,5	MR 2l 160 - 200 L 4 MR 2l 125 - 200 L 4	9,94	*	91,3 106	39992 34503	1,9	MR 3I 180 - 225 M 4 MR 3I 160 - 225 M 4	18,6
	191	13023	1,9	MR 2I 126 - 200 L 4	8,91		133	27986	1,7	MR 2I 160 - 225 M 4	12,8
	189 213	13156	2,8 1,8	MR 2I 140 - 200 L 4 MR 2I 125 - 200 L 4	9 8		129 141	28830 26529	2,36 2,8	MR 2I 180 - 225 M 4 MR 2I 180 - 225 M 4	13,1
	213	11694	2,24	MR 2I 126 - 200 L 4	8		146	25581	2	MR 2I 160 - 225 M 4	11,7
	208 235	11919 10570	3,15	MR 2I 140 - 200 L 4 MR 2I 125 - 200 L 4	8,15 7,23		159 158	23497 23613	2,36 3,15	MR 2I 160 - 225 M 4 MR 2I 180 - 225 M 4	10,7 10,8
	235	10570	2,65	MR 2I 126 - 200 L 4	7,23	*	170	21927	1,5	MR 2I 140 - 225 M 4	10
	233 259	10650	3,15	MR 2I 140 - 200 L 4 MR 2I 125 - 200 L 4	7,29 6,57		181	20552	2,8	MR 2I 160 - 225 M 4	9,3
	259	9606	2,8	MR 2l 126 - 200 L 4	6,57	_	189 182	19734 20465	1,8 3,15	MR 2I 140 - 225 M 4 MR 2I 180 - 225 M 4	9 9,3
	272 302	9136	3,15 2,5	MR 2I 140 - 200 L 4 MR 2I 125 - 200 L 4	6,25 5,63	*	208	17879	2,12	MR 2I 140 - 225 M 4	8,1
	302	8223	3,15	MR 2I 126 - 200 L 4	5,63	*	209 233	17812 15975	3,15	MR 2l 160 - 225 M 4 MR 2l 140 - 225 M 4	8,1 7,2
	336 336	7395 7395	2,8 3,15	MR 2I 125 - 200 L 4 MR 2I 126 - 200 L 4	5,06 5,06		233	15988	3,15	MR 2I 160 - 225 M 4	7,2
	425	5847	3	MR 2I 125 - 200 L 4	4	*	272 268	13704 13896	2,12	MR 2I 140 - 225 M 4 MR 2I 160 - 225 M 4	6,2 6,3
	36,4	82417	0,95	MR 3I 180 - 225 S 4	46,7	*	301	12382	3,15	MR 2I 140 - 225 M 4	5,6
	40,9	73360	1,12	MR 3I 180 - 225 S 4	41,5	75 **	51,2	87239	0,95	MR 3I 180 - 250 M * 4	33,2
	47	63850	0,95	MR 3I 160 - 225 S 4	36,2	**	55,4	80507	0,95	MR 3I 180 - 250 M * 4	30,7
	47,2 51,2	63578 58688	1,32 1,4	MR 3I 180 - 225 S 4 MR 3I 180 - 225 S 4	36 33,2	**	62,3	71660	1,12	MR 3I 180 - 250 M * 4	27,3
	54,3	55337	1,12	MR 3I 160 - 225 S 4	31,3	**	71,9	62106	1,32	MR 3I 180 - 250 M * 4	23,7
	55,4 62,6	54159 47970	1,4 1,18	MR 3I 180 - 225 S 4 MR 3I 160 - 225 S 4	30,7	**	79,6 91,3	56068 48879	1,5 1,6	MR 3I 180 - 250 M * 4 MR 3I 180 - 250 M * 4	21,4
	62,3	48208	1,7	MR 3I 180 - 225 S 4	27,3		133	34205	1,4	MR 2I 160 - 250 M 4	12,8
	71,6 71,9	41959 41780	1,4 2	MR 3I 160 - 225 S 4 MR 3I 180 - 225 S 4	23,8 23,7		129 141	35236 32424	1,9 2,24	MR 2I 180 - 250 M 4 MR 2I 180 - 250 M 4	13,1
	s valid for d	L continuous (l duty; incre	ase possible for S2 S10 (ch. 2b)		M_2 increase					1, '
Mount	ing position	n B5R (see	table ch. 2		an and the second						
		nt temperatu ermal power		(30°C) consult us for thermal power n.	verification.						
				EM Edition Octo	1 0011	NI II				Rossi	

8 - Manufacturing programme (gearmotors)

P ₁	n ₂	M_2 Ib in	fs	Gear reducer - Motor	i
1)				2)	
75	146 159 158 181	31266 28718 28861 25120	1,6 1,9 2,65 2,24	MR 2I 160 - 250 M 4 MR 2I 160 - 250 M 4 MR 2I 180 - 250 M 4 MR 2I 160 - 250 M 4	11,7 10,7 10,8 9,37
*	182 202	25013 22581 21770	2,65 2,65 2,65	MR 2I 180 - 250 M 4 MR 2I 180 - 250 M 4 MR 2I 160 - 250 M 4	9,33 8,43
*	209	19541 19686	2,65 2,65 2,65	MR 2I 160 - 250 M 4 MR 2I 180 - 250 M 4 MR 2I 180 - 250 M 4	8,12 7,29 7,35

P ₁	n ₂	M ₂	fs	Gear reducer - Motor	i
1)				2)	
75	268	16984	2,65	MR 2I 160 - 250 M 4	6,34
100 *	165	37646	1,8	MR 2I 180 - 280 S 4	10,3
*	179	34641	2,12	MR 2I 180 - 280 S 4	9,48
*	201	30834	2,12	MR 2I 180 - 280 S 4	8,44
*:	232	26723	2,12	MR 2I 180 - 280 S 4	7,31
*:	258	24125	2,12	MR 2I 180 - 280 S 4	6,6
**	295	21032	2,12	MR 2I 180 - 280 S 4	5,76

¹⁾ Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (ch. 2b) in which case M_2 increases and fs decreases proportionately.
2) For complete designation when ordering, see ch. 3.

* Mounting position **B5R** (see table ch. 2b).

* In case of ambient temperature > 30 °C consult us for thermal power verification.

** Consult us for thermal power verification.

9 - Designs, dimensions, mounting positions and lubrificant quantities

Standard design¹⁾ Mounting position B3, B6, B7, B8, V5, V6

PC1A

Standard design¹⁾ Mounting position B5, V1, V3

FC1A

S	ize	Α	В	С	D Ø	Е	F	G	H h11	K Ø	L	M Ø	N Ø	P Ø	Q	S	Т	U	٧	P,	X Ø	,	Y ≈	,	/ ₁	W ≈	W ₁		ass lb
red.	motor B5												h6						Z		*		2)		2)				2)
32	63 71 ⁴⁾	4,53	2,09	0,79	0,63	1,18	0,37	3,86-3,465)	2,95	0,37	0,39	4,53	3,74	5,51	0,12	0,39	5,47					7,28 8,86		12,32 13,9	14,06 16,38	3,98 4,41	6,93 7,36	17,6 24,3	22 30,9
40	63 71 80 ³⁾	5,2	2,48	0,75	0,748	1,57	0,37	4,45	3,54	0,37	0,47	5,12	4,331	6,3	0,14	0,39	6,14		3,43	6,3	5,51		10,83	13,31 14,33 15,67	15,04 16,85 18,82	4,41	7,95	30,9	28,7 37,5 48,5
41	63 71 80 ³⁾	5,2	2,48	1,34	0,945	1,42	0,37	5,04-4,455)	3,54	0,37	0,47	5,12	4,331	6,3	0,14	0,39	6,14	3,62	3,43	6,3	5,51	7,28 8,31 9,65	10,83	13,74 14,76 16,1	15,47 17,28 19,25	4,41	7,95	30,9	28,7 37,5 48,5

- 1) See ch. 3 for motor design.
 2) Values valid for brake motor.
 3) Mounting position **B5A** (see ch. 2b), brake motor **F0 80D not possible**.
 4) Mounting position **B5R** (see ch. 2b).
 5) Dimensions of shaft end shoulder and flange surface respectively.
 6) For size 51 **Y**₁ is -0,32 in.
 7) For motor shaft **H** is -0,59 in, **H**₀ +0,59 in.
 8) For motor shaft **H** is -0,32 in, **H**₀ +0,59 in.
 9) For motor shaft **H** is -1,14 in, **H**₀ +1,14 in.
 10) Two of the motor flange holes are slotted (see ch. 2b).

Mounting positions and grease quantities [gal]

Unless otherwise stated, geamotors are supplied in mounting positions B3 or B5 which, being standard, are omitted from the designation.

9 - Designs, dimensions, mounting positions and lubricant quantities

MR 2I, 3I 50 ... 180

Standard **design**¹⁾ Mounting position B3, B6, B7, B8, V5, V6

UC2A

	Size	Α	В	С	D	Е	G	G,	H h11	K	L	M Ø	N Ø	P Ø	R	Т	U	P ₁ Ø	X Ø	Y ≈		Y ₁ ≈		W ≈	W ₁ ≈	Ma	iss b
red _.	motor B5		B ,						H ₀ h11		L,	F Ø	h6	Q ₊₂ °	s	U,			*		2)		2)				2)
50 51	63 ¹⁰⁾ 71 80 90 100 ⁴⁾	4,88	2,99 2,05	1,2	0,945 (50) 1,102 (51)	1,97 (50) 1,65 (51)	5,04	0,63	4,17 2,8	0,45	0,67 0,47	5,12 0,37	4,331	6,3 0,14	0,53 0,39	5,83	4,33 3,94	5,51 6,3 7,87 7,87 7,87	4,8 5,51 6,3 7,09 8,15	7,28 8,31 9,09 10,63 13,5	9,02 10,83 12,09 13,98		16,65 ⁶⁾ 18,96 ⁶⁾ 19,72 ⁶⁾ 21,61 ⁶⁾	3,98 4,41 4,8 5,87 6,46	8,15 8,58 8,98 10,04 10,63	35 42 49 66 82	40 49 60 77
63 64	71 80 90 100 112	6,02	3,78 2,6	1,44	1,26 (63) 1,496 (64)	2,28	6,22	0,75	5,2 3,35	0,55	0,79 0,55	6,5 0,45	5,118	7,87 0,14	0,63 0,47	7,17	5,35 4,88	6,3 7,87 7,87 9,84 9,84	5,51 6,3 7,09 8,15 8,15	8,31 9,09 10,63 13,5 13,5	10,83 12,09 13,98 16,5 17,52	17,56 18,35 19,88 22,76 22,76	20,08 21,34 23,23 25,75 26,77	4,41 4,8 5,87 6,46 6,46	9,61 10 11,06 11,65 11,65	60 66 84 99 115	66 77 95 115 139
80 81	80 90 100 112 132	7,56	4,84 3,43	1,69	1,496 (80) 1,89 (81)	3,15	7,76 7,87	0,87	6,3 4,17	0,63	0,94 0,67	8,46 0,55	7,087	9,84 0,16	0,75 0,55	8,9	6,73 6,18	7,87 7,87 9,84 9,84 11,81	6,3 7,09 8,15 8,15 10,24	9,09 10,63 13,5 13,5 15,83	12,09 13,98 16,5 17,52 21,14	20,87 22,4 25,28 25,28 27,72	23,86 25,75 28,27 29,29 33,03	4,8 5,87 6,46 6,46 7,72	11,1 12,17 12,76 12,76 14,02	99 117 132 148 209	110 128 148 172 245
100 101	90 100 112 132 160 180M	9,45	6,3 4,69	2,03	1,89 (100) 2,165 (101)	3,23	9,53	1,06	7,68 5,2	0,71	1,12 0,79	10,43 0,55	9,055	11,81 0,16	0,89 0,63	11,02	8,43 7,8	7,87 9,84 9,84 11,81 13,78 13,78	7,09 8,15 8,15 10,24 12,4 12,4	10,63 13,5 13,5 15,83 21,26 21,26	13,98 16,5 17,52 21,14 24,96 24,96	24,45 27,32 27,32 29,65 35,71 35,71	27,8 30,31 31,34 34,96 39,41 39,41	5,87 6,46 6,46 7,72 9,25 9,25	13,54 14,13 14,13 15,39 16,93 16,93	176 192 207 269 335 406	187 207 231 304 388 459
125 126	100 112 132 160 180 200	11,69	7,87 5,94	2,32	2,362 (1 25) 2,756 (1 26)	4,13	11,69 11,77	1,18	9,29	0,87	1,38 0,98	11,81 0,71	9,843	13,78 0,2	1,04 0,75	13,58	10,39 9,65	9,84 9,84 11,81 13,78 13,78 15,75	8,15 8,15 10,24 12,4 13,94 13,94	13,5 13,5 15,83 21,26 24,21 24,21	16,5 17,52 21,14 24,96 28,9 28,9	30,51 30,51 32,83 38,27 41,22 41,3	33,5 34,53 38,15 41,97 45,91 45,98	6,46 6,46 7,72 9,25 10,12 10,12	15,75 15,75 17,01 18,54 19,41 19,41	298 313 375 441 560 617	313 337 410 494 639 705
140	100 112 132 160 180 200 225	11,69	8,58 6,65	2,32	3,15	5,12	12,48 13,35	1,18	9,84 7) 6,3 7)	0,87	1,38 0,98	11,81 0,71	9,843	13,78 0,2	1,04 0,75	13,58	11,1 10,35	9,84 9,84 11,81 13,78 13,78 15,75 17,72	8,15 8,15 10,24 12,4 13,94 13,94 16,38	13,5 13,5 15,83 21,26 24,21 24,21 27,17	16,5 17,52 21,14 24,96 28,9 28,9	32,2 32,2 34,53 39,96 42,91 42,99 46,81	35,2 36,22 39,84 43,66 47,6 47,68	6,46 6,46 7,72 9,25 10,12 10,12 11,50	16,14 16,14 16,97 18,5 19,37 19,37 20,75	326 342 403 470 589 646 778	342 366 439 522 668 734
160	132 160 180 200 225 250	14,69	9,84 7,52	2,7	3,543	5,12	14,41 14,49 14,96	1,34	11,61 8) 7,87 8)	1,06	1,65 1,18	15,75 0,87	13,78	17,72 0,2	1,24 0,87	16,93	12,83 11,97	11,81 13,78 13,78 15,75 17,72 21,65	10,24 12,4 13,94 13,94 16,38 16,38	15,83 21,26 24,21 24,21 27,17 27,17	21,14 24,96 28,9 28,9 - -	36,69 42,13 45,08 45,08 48,11 48,58	42,01 45,83 49,76 49,76 –	7,72 9,25 10,12 10,12 11,5 11,5	19,49 20,55 21,42 21,42 22,8 22,8	562 628 747 805 937 1012	597 681 827 893 –
180	132 160 180 200 225 250 280	14,69	10,83 8,5	2,7	3,937	6,5	15,39 15,47 15,94	1,34	12,4 9) 7,87 9)	1,06	1,65 1,18	15,75 0,87	13,78	17,72 0,2	1,24 0,87	16,93	13,82 12,95	11,81 13,78 13,78 15,75 17,72 21,65 21,65	10,24 12,4 13,94 13,94 16,38 16,38 19,29	15,83 21,26 24,21 24,21 27,17 27,17 32,28	21,14 24,96 28,9 28,9 - - -	39,06 44,49 47,44 47,44 50,47 50,94 56,06	44,37 48,19 52,13 52,13 - - -	7,72 9,25 10,12 10,12 11,5 11,5 14,17	20,28 20,51 21,38 21,38 22,76 22,76 25,43	613 679 798 855 988 1063 1422	648 732 877 944 - -

See notes on page 41.

Mounting positions and oil quantities [gal]

Unless otherwise stated, geamotors are supplied in mounting position B3 which, being standard, is omitted from the designation.

10 - Combined gear reducer and gearmotor units

Nominal torques for final gear reducer

$M_{\rm N2}$ [lb in]					
for $n_2 \le 11,2 \text{ rpm}^{3)}$	η final	i final	Final gear reducer	+	Initial gear reducer or gearmotor
3 000	0,94	30	MR 3I 63-80B 4 B5A/46,7 ¹⁾	+	R 2I o / or MR 2I, 3I 40
4 000		30	MR 3I 64-80B 4 B5A/46,7 ¹⁾	+	R 2I o / or MR 2I, 3I 40
6 000		32,8	MR 3I 80-80C 4 B5A/42,7 ¹⁾	+	R 2I o / or MR 2I, 3I 40
8 000		49,8	MR 3I 81-80C 4 B5A/28,1 ¹⁾	+	R 2I o / or MR 2I, 3I 40
11 800		32	MR 3I 100-90LC 4 B5/43,8	+	R 2I, 3I o / or MR 2I, 3I 50 ²⁾
16 000		53,1	MR 3I 101-90LC 4 B5/26,4	+	R 2I, 3I o / or MR 2I, 3I 50 ²⁾
23 600		34,1	MR 3I 125-112M 4 B5/41,1	+	R 2I, 3I o / or MR 2I, 3I 63 ²⁾
31 500		50,2	MR 3I 126-112M 4 B5/27,9	+	R 2I, 3I o / or MR 2I, 3I 63 ²⁾
45 000		55,7	MR 3I 140-112MC 4 B5/25,1	+	R 2I, 3I o / or MR 2I, 3I 63 ²⁾
63 000		49,7	MR 3I 160-132MB 4 B5/28,2	+	R 2I, 3I o / or MR 2I, 3I 80 ²⁾
85 000		57,1	MR 3I 180-132MB 4 B5/24,5	+	R 2I, 3I o / or MR 2I, 3I 80 ²⁾

For initial gear reducer or gearmotor performance data see ch. 6, 8. 1) Final gearmotor has a 6,30 in motor mounting flange. 2) Gear reducer in design "Oversized B5 flange" (see ch. 15); moreover, size 63 has the low speed shaft reduced to 1,10 in: "Oversized B5 flange - \varnothing 1,10". 3) Provided that f_8 is always \ge 0,8, it can be reduced by **1,06** for $n_2 = 2.8 \div 0.71$ rpm, by **1,12** for $n_2 \le 0.71$ min⁻¹.

11 - Radial loads¹⁾ F_{r1} [lb] on high speed shaft end OHL

Radial loads generated on the shaft end by a drive connecting gear reducer and motor must be less than or equal to those given in the relevant table

The radial load F_{r1} given by the following formula refers to most common drives:

$$F_{r1} = \frac{189\ 090 \cdot P_1}{d \cdot n_1}$$
 [lb] for timing belt drive

$$F_{r1} = \frac{345\ 050 \cdot P_1}{d \cdot n_1}$$
 [lb] for V-belt drive

where: P_1 [hp] is power required at the input side of the gear reducer, n_1 [rpm] is the speed, d [in] is the pitch diameter.

Radial loads given in the table are valid for overhung loads on centre line of high speed shaft end, i.e. operating at a distance of $0.5 \cdot e$ (e = shaft end length) from the shoulder. If they operate at $0.315 \cdot e$ multiply by 1.25; if they operate at $0.8 \cdot e$ multiply by 0.8.

IMPORTANT: tabulated values for radial load F_{r1} can increase considerably in certain instances (direction of rotation, angular position of load, etc.). **Consult us** if need be.

								Gea	reduce	r size							
	32	40		50	50		63	63		80	80	100	, 101	125, 12	26, 140	160,	180
			51	51	51	64	64	64	81	81	81						
n₁			$i_{\rm N} \leq 12,5$	$i_{\rm N} \ge 16$		$i_{\rm N} \leq 12,5$	$i_{\rm N} \ge 16$		$i_{\rm N} \leq 12.5$	$i_{\rm N} \ge 16$							
rpm	R 2I	R 2I	R 2I	R 2I	R 3I	R 2I	R 2I	R 3I	R 2I	R 2I	R 3I	R 2I	R 3I	R2I	R 3I	R 2I	R 3I
1 800	24	36	90	56	36	140	90	56	224	140	90	355	140	560	355	900	560
1 120	27	40	100	63	40	160	100	63	250	160	100	400	160	630	400	1 000	630
710	32	48	118	75	48	190	118	75	300	190	118	475	190	750	475	1 180	750
355	40	60	150	95	60	236	150	95	375	236	150	600	236	950	600	1 500	950

An axial load of up to 0,2 times the value in the table is permissible, simultaneously with the radial load. If exceeded consult us.

12 - Radial loads F_{r2} [lb] on low speed shaft end OHL

Axial loads F_{a2}

Permissible $F_{\rm a2}$ is shown in the column where direction of rotation of low speed shaft (black or white arrow) and direction of the axial force (solid or broken arrow) correspond to those of the gear reducer in question.

Wherever possible, choose the load conditions corresponding to the **column** with **highest** admissible values.

Radial loads F_{co}

Radial loads generated on the shaft end by a drive connecting gear reducer and machine must be less than or equal to those given in the relevant table.

Normally, radial loads on low speed shaft ends are considerable: in fact there is a tendency to connect the gear reducer to the machine by means of a transmission with high transmission ratio (economizing on the gear reducer) and with small diameters (economizing on the drive, and for requirements dictated by overall dimensions). Bearing life and wear (which also affect gears unfavourably) and low speed shaft strength, clearly impose limits on permissible radial load.

The high value which radial load may take on, and the importance of not exceeding permissible values, make it necessary to take full advantage of the gear reducer's possibilities.

Permissible radial loads given in the table are therefore based on: the product of speed n_2 [rpm] multiplied by bearing life $L_{\rm h}$ [h] required, the direction of rotation, the angular position ϕ [°] of the load and torque M_2 [lb] required.

Radial loads given in the table are valid for overhung loads on centre line of low speed shaft end, i.e. operating at a distance of 0,5 \cdot E (E = shaft end length) from the shoulder. If operating at 0,315 \cdot E multiply by 1,25; if operating at 0,8 \cdot E multiply by 0,8.

Radial load $F_{\rm r2}$ for most common drives has the following value and angular position

$$F_{r_2} = \frac{126\ 060 \cdot P_2}{d \cdot n_2}$$
 [Ib] for chain drive (lifting in general); for timing belt drive replace 126 060 with 189 090

$$F_{r2} = \frac{315\ 050 \cdot P_2}{d \cdot n_2}$$
 [lb] for V-belt drive

$$F_{r2} = \frac{134 \ 112 \cdot P_2}{d \cdot n_2}$$
 [Ib] for spur gear pair drive

$$F_{r2} = \frac{447546 \cdot P_2}{d \cdot n_2}$$
 [Ib] for friction wheel drive (rubber-on-metal)

where: P_2 [hp] is power required at the output side of the gear reducer, n_2 [rpm] is the speed, d [in] is the pitch diameter.

12 - Radial loads $F_{\rm r2}$ [daN] or axial loads $F_{\rm a2}$ [daN] on low speed shaft end OHL

Train	j _N									educer s	size						
of gears									F	_{r2} ¹⁾ [lb]							
		32	40	41	50	51	63	64	80	81	100	101	125	126	140	160	180
21	4 5,6 6,3 7,1 8 9 10 11,2 12,5 14 16 18 20 25 31,5 40	212 236 280 - 280 - - - -	212 -236 -265 -450 -450 450 450 450 450	- 300 335 335 355 355 355 400 400 560 - - - -	315 315 315 315 315 315 315 400 400 800 800 800 800 800 800	315 315 315 315 315 315 425 560 560 670 670 670 670 950	265 265 375 375 500 236 236 335 335 475 630 630 1180 1180 630	250 250 400 475 475 475 475 600 600 750 950 950 670 1180	335 335 500 670 670 530 224 400 600 600 800 1060 1800	1500 1500 1800 1800 1900 2000 2000 2240 2240 2240 2240 2240 2	280 280 600 850 850 170 170 335 335 670 1000 1000 1800 1800	2240 2240 2650 2800 2800 1700 2500 3000 3350 3350 3550 3550 3550 -	2360 2360 2360 2360 2360 2360 2360 2800 2800 2800 4500 4500 -	1500 1500 1900 1900 1900 1900 2360 2360 2360 3000 3000 3350 -	- 2650 2650 2650 2650 2650 2650 3350 3750 3750 - 4500 - -	3150 3150 3150 3150 3150 3550 3550 3550	3150 3150 3150 3150 3150 3150 4250 4250 4250 4250 6000 6000 6000
31	16 18 20 22,4 25 28 31,5 35,5 40 45 50 56 63 71 80 90 100 112 125 140 160 200			560 560 560 560 560 560 560 560 560 560	800 800 800 800 800 800 800 800 800 800	630 630 950 950 950 950 950 950 950 950 950 95	630 630 1180 1180 1180 1180 1180 1180 1180 11	670 670 900 900 900 1500 1500 1500 1500 1500 1	800 800 800 1060 1800 1800 1800 1800 180	2240 2240 2240 2240 2240 2240 2240 2240	1000 1000 1400 1400 1800 2800 2800 2800 2800 2800 2800 - 2800 - 2800 - 2800 - 2800 - 2800	3550 3550 3550 3550 3550 3550 3550 3550	3750 4500 4500 4500 4500 4500 4500 4500 4	2800 2800 2800 3350 3750 3750 5600 5600 5600 5600 - 5600 - 5600 - 5600 -	3550 3550 4250 5000 5000 7100 7100 7100 7100 7100 - 7100 - 7100 - 5600 -	4250 4250 4250 5300 5300 6300 7100 7100 9000 9000 9000 - 9000 - 9000 - 9000 -	4500 4500 5600 6700 6700 9500 11200 11200 11200 - 11200 - 11200 - 11200 - 11200

¹⁾ An axial load of up to 0,2 times the value in the table is permissible. If exceeded consult us. 2) It's not avaible ICI train of gears.

13 - Structural and operational details

Efficiency n:

- gear reducer with 2 gear pairs (21) 0,96, with 3 gear pairs (31) 0,94; for $M_2 \ll M_{\rm N2}$, η could considerably decrease; consult us.

Overloads

Where a gear reducer is subjected to high static and dynamic overloads, the need arises for verifying that such overloads will always remain lower than $2 \cdot M_{N2}$ (see ch. 6; see ch. 8 where $M_{N2} = M_2 \cdot f$ s).

Overloads are normally generated when one has:

- starting on full load (especially for high inertias and low transmission ratios), braking, shocks;
- gear reducers in which the low speed shaft becomes driving member due to driven machine inertia;
- applied power higher than that required; other static or dynamic

The following general observations on overloads are accompanied by some formulae for carrying out evaluations in certain typical instances

Where no evaluation is possible, install safety devices which will keep values within $2 \cdot \mathbf{M}_{N2}$.

Starting torque

When starting on full load (especially for high inertias and low transmission ratios) verify that $2 \cdot M_{N2}$ is equal to or greater than starting torque, by using the following formula:

$$M_2$$
 start = $\left(\frac{M \text{ start}}{M_{\text{N}}} \cdot M_2 \text{ available} - M_2 \text{ required}\right) \frac{J}{J + J_0} + M_2 \text{ required}$

where: M_2 required is torque absorbed by the machine through work and frictions; M_2 available is output torque due to the motor's nominal power; J_0 is the moment of inertia (of mass) of the motor; J_0 is the external moment of inertia (of mass) in lb ft² (gear reducers, couplings, driven machine) referred to the motor shaft;

for other symbols see ch. 2b.

NOTE: when seeking to verify that starting torque is sufficiently high for starting, take into account starting friction, if any, in evaluating M_2 required.

Stopping machines with high kinetic energy (high moments of inertia combined with high speeds) with brake motor

Verify braking stress by means of the formula:

$$\left(\frac{Mf}{\eta} \cdot i + M_2 \text{ required}\right) \frac{J}{J + J_0} - M_2 \text{ required} \leqslant 2 \cdot M_{\text{N2}}$$

Where. Mf is the braking torque setting (see table in ch. 2b); for other symbols see above and ch. 1.

Operation with brake motor

Starting time ta and revolutions of motor ϕa_1

$$ta = \frac{(J_0 + J) \cdot n_1}{25,605 \left(M \text{ start} - \frac{M_2 \text{ required}}{i} \right)} [s];$$
 $\phi a_1 = \frac{ta \cdot n_1}{19,1} [rad]$

Braking time tf and revolutions of motor φf_1

$$tf = \frac{(J_0 + J) \cdot n_1}{25,605 \left(Mf + \frac{M_2 \text{ required}}{i}\right)} [s]; \qquad \varphi f_1 = \frac{tf \cdot n_1}{19,1} [rad]$$

where: $M \text{ start [lb in] is motor starting torque} \left(\frac{63\ 025 \cdot P_1}{n_1} \cdot \frac{M \text{ start}}{M_N} \right) \text{ (see ch. 2b);}$

Mf [lb in] is the braking torque setting of the motor (see ch. 2b); for other symbols see above and ch. 1.

Assuming a regular air-gap and ambient humidity, and utilizing suitable electrical equipment, repetition of the braking action, as affected by variation in temperature of the brake and by the state of wear of friction surface, is approx $\pm 0.1 \cdot \varphi f_1$.

Low speed shaft angular backlash and torsional stiff-

A rough quide for the angular backlash (high speed shaft being locked) is given in the table. Values vary according to temperature and transmission ratio

Also the approx. values for low speed shaft torsional stiffness - high speed shaft being locked - are given in the table according to the train of gears.

On request it is possible to supply gear reducers with reduced backlash lower than or equal to the minimum values stated on the table.

1) At the distance of 1 m from the low speed shaft centre, angular backlash in mm is obtained by multiplying the value stated in the table by 1 000 (1 rad = 3438').

Gear reducer	Angular bac	klash [rad]1)	Torsional stif	fness [in-lb/']
	min	max	R, MR 2I	R, MR 3I
32	0,0050	0,0100	14,2	8
40	0,0045	0,0090	27,9	15,9
41	0,0045	0,0090	31,4	17,7
50	0,0036	0,0071	66	38,1
51	0,0036	0,0071	75	42,5
63	0,0032	0,0063	133	75
64	0,0032	0,0063	150	84
80	0,0028	0,0056	266	150
81	0,0028	0,0056	297	168

Gear reducers input face

The input face of gear reducers (size ≥ 50) has a flange with tapped holes and «hole» centering for eventual fitting of motor support, etc. The use of threaded holes closed with dowel, if any, requires the removal of dowel (avoiding eventual oil loss) and the readjustment of sealant

Gear reducer size	F ₁	g «	M ₁ Ø	N ₁ Ø H7	P ₁ Ø	Qi
50, 51	M 8	0,37	4,53 ²⁾	3,74	5,51	0,16
63, 64	M 8	0,39	5,12	4,33	6,3	0,18
80, 81	M 10	0,41	6,5	5,12	7,87	0,18
100, 101	M 12	0,43	8,46	7,09	9,84	0,2
125, 126, 140	M 12 ⁶	0,55 ³⁾	10,43	9,06	11,81	0,2
160, 180	M 16	0,75 ³⁾	13,78	11,81	15,75	0,24

- 1) Working length of thread 0,041 \mathbf{F}_1 , 0,059 \mathbf{F}_1 for R 2I 125 ... 180. 2) The two upper holes are on a diameter \mathbf{M}_1 of 5,12 in: consult us. 3) For R 3I \mathbf{g} dimension is -0,157 (sizes 125 ... 140), -0,236 (sizes 160 and 180).

UT.C 644

13 - Structural and operational details

Shaft end

Shaft end					Parallel key	Keyway			
D Ø	D E ¹⁾		$ \begin{array}{c c} \mathbf{E}^{1)} & \mathbf{d} & \mathbf{b} \times \mathbf{h} \times \mathbf{I}^{1)} \end{array} $		$\mathbf{b} \times \mathbf{h} \times \mathbf{I}^{1)}$	b	t	t ₁	
0,433	j 6	0,91	(0,79)	M 5	0,157 x 0,157 x 0,709 (0,472)	0,157	0,098	0,5	
0,551	j 6	1,18		M 6	0,197 x 0,197 x 0,984	0,197	0,118	0,638	
0,63	j 6	1,18		M 6	0,197 x 0,197 x 0,984	0,197	0,118	0,717	
0,748 0,945 1,102	j 6 j 6 j 6	1,57 1,97 2,36	(1,42) (1,65)	M 6 M 8 M 8	0,236 x 0,236 x 1,417 0,315 x 0,276 x 1,772 (0,984) 0,315 x 0,276 x 1,772 (1,417)	0,236 0,315 0,315	0,138 0,157 0,157	0,854 1,071 1,228	
1,26 1,496 1,654	k 6 k 6 k 6	3,15 3,15 4,33	(2,28) (2,28)	M 10 M 10 M 12	0,394 x 0,315 x 2,756 (1,969) 0,394 x 0,315 x 2,756 (1,969) 0,472 x 0,315 x 3,543	0,394 0,394 0,472	0,197 0,197 0,197	1,39 1,626 1,783	
1,772	k 6	3,23	(3,15)	M 12	0,551 x 0,354 x 2,756	0,551	0,217	2,039	
1,89	k 6	3,23		M 12	0,551 x 0,354 x 2,756	0,551	0,217	2,039	
2,165	m 6	3,23		M 12	0,63 x 0,394 x 2,756	0,63	0,236	2,354	
2,362	m 6	4,13		M 16	0,709 x 0,433 x 3,543	0,709	0,276	2,535	
2,756	m 6	4,13		M 16	0,787 x 0,472 x 3,543	0,787	0,295	2,949	
3,15	m 6	5,12		M 20	0,866 x 0,551 x 4,331	0,866	0,354	3,362	
3,543	m 6	5,12		M 20	0,984 x 0,551 x 4,331	0,984	0,354	3,756	
3,937	m 6	6,5		M 24	1,102 x 0,63 x 5,512	1,102	0,394	4,189	

Plug position

- I valori tra parentesi sono relativi all'estremità d'albero corta.
 Values in brackets are for short shaft end.

Fixing bolt dimensions for gear reducer feet

Gear reducer size	Short bolt	Long bolt
		37-88¹¹ nax)
50, 51	M 10 × 30	M 10 × 35
63, 64	M 12 × 35	M 12 × 40
80, 81	M 14 × 40	M 14 × 50
100, 101	M 16 × 50	M 16 × 60
125, 126, 140	M 20 × 60	M 20 × 70
160, 180	M 24 × 70	M 24 × 90

¹⁾ Length of thread definites in mm.

14 - Installation and maintenance

General

Be sure that the structure on which gear reducer or gearmotor is fitted is plane, levelled and sufficiently dimensioned in order to assure fitting stability and vibration absence, keeping in mind all transmitted forces due to the masses, to the torque, to the radial and axial loads.

Position the gear reducer or gearmotor so as to allow a free passage of air for cooling both gear reducer and motor (especially at motor fan side).

Avoid: any obstruction to the air-flow; heat sources near the gear reducer that might affect the temperature of cooling-air and of gear reducer for radiation; insufficient air recycle or any other factor hindering the steady dissipation of heat.

Mount the gear reducer so as not to receive vibrations.

When external loads are present use pins or locking blocks, if necessarv.

When fitting gear reducer and machine and/or gear reducer and eventual flange **B5** it is recommended to use **locking adhesives** such as LOCTITE on the fastening screws (also on flange mating surfaces).

For outdoor installation or in a hostile environment protect the gear reducer or gearmotor with anticorrosion paint. Added protection may be afforded by water-repellent grease (especially around the rotary seating of seal rings and the accessible zones of shaft end).

Gear reducers and gearmotors should be protected wherever possible, and by whatever appropriate means, from solar radiation and extremes of weather; weather protection **becomes essential** when high or low speed shafts are vertically disposed, or where the motor is installed vertical with fan uppermost.

For ambient temperatures greater than 124 °F (40 °C) or less than 32 °F (0 °C), consult us.

Before wiring-up the gearmotor, make sure that motor voltage corresponds to input voltage. If the direction of rotation is not as desired, invert two phases at the terminals.

Star-delta starting should be adopted for starting on no load (or with a very small load) and/or when the necessity is for smooth starts, low starting current and limited stresses.

If overloads are imposed for long periods of time, or if shocks or danger of jamming are envisaged, then motor-protections, electronic torque limiters, fluid couplings, safety couplings, control units or other suitable devices should be fitted.

Where duty cycles involve a high number of starts on-load, it is advisable to utilize **thermal probes** (fitted on the wiring) for motor protection; a thermal overload relay is unsuitable since its threshold must be set higher than the motor's nominal current rating.

Use varistors to limit voltage peaks due to contactors

Warning! Bearing life, good shaft and coupling running depend on alignment precision between the shafts. Carefully align the gear reducer with the motor and the driven machine (with the aid of shims if need be), interposing flexible couplings whenever possible

Whenever a leakage of lubricant could cause heavy damages, increase the frequency of inspections and/or envisage appropriate control devices (e.g.: remote oil level gauge, lubricant for food industry, etc.).

In polluting surroundings, take suitable precautions against lubricant contamination through seal rings or other.

Gear reducer or gearmotor should not be put into service before it has been incorporated on a machine which is conform to 98/37/EEC directive.

For brake or non-standard motors, consult us for specific information.

Fitting of components to shaft ends

It is recommended that the bore of parts keyed to shaft ends is machined to H7 tolerance; for low speed shaft ends, tolerance must be **K7** when load is not uniform and light. Other details are given in the «Shaft end» table (ch. 15).

Before mounting, clean mating surfaces thoroughly and lubricate against seizure and fretting corrosion.

Installing and removal operations should be carried out with **pullers** and **jacking screws** using the tapped hole at the shaft butt-end; for H7/m6 and K7/j6 fits it is advisable that the part to be keyed is preheated to a temperature of $176 \div 212 \,^{\circ}\text{F}$ (80 $\div 100 \,^{\circ}\text{C}$).

Lubrication

Gear pairs and bearings are oil-bath or splash lubricated excluding sizes 32 ... 41 which are grease lubricated.

Sizes 32 ... 41: gear reducers are supplied **filled with synthetic grease** (SHELL Tivela Compound A, IP Telesia Compound A, MOBIL Glygoyle Grease 00), providing lubrication «**for life**» — assuming pollution-free surroundings.

Sizes 50 ... 81: gear reducers are supplied filled with synthetic oil (KLÜBER Klübersynth GH 6-220, MOBIL Glygoyle 30) providing lubrication «for life» – assuming pollution-free surroundings. Ambient temperature range 32 \div 104 °F (0 \div 40 °C) with peaks of –4 °F (20 °C) and +122 °F (50 °C).

Important: verify mounting position keeping in mind that if gear reducer is installed in a mounting position which differs from the one indicated on the name plate, it could require the addition of the difference between the two quantities of lubricant given in ch. 7 and 9, by way of the casing filler hole.

Sizes 100 ... 180: gear reducers are supplied without oil; before putting into service, fill to the specified level with mineral oil (AGIP Blasia, ARAL Degol BG, BP-Energol GR-XP, ESSO Spartan EP, IP Mellana oil, MOBIL Mobilgear 600, SHELL Omala, TEXACO Meropa, TOTAL Carter EP) having the ISO viscosity grade given in the table

When it is required to increase oil change interval («long life»), the ambient temperature range, and/or reduce oil temperature, use **synthetic oil** (with polyglycol basis: KLÜBER Klübersynth GH6 ..., MOBIL Glygoyle, SHELL Tivela S oil...; with polyalphaolefines basis, always suggested: AGIP Blasia SX, CASTROL Tribol 1510, ELF Reductelf SYNTHESE, ESSO Spartan SEP, KLÜBER Klübersynth EG4, MOBIL SHC) having ISO viscosity grade as indicated in the table

ISO viscosity grade

Mean kinematic viscosity [cSt] at 104 °F (40 °C).

Speed n ₂ rpm	mine	ient temperature eral oil 50 (10) ÷104 (40)	synthetic oil
> 224 224 ÷ 22,4 22,4 ÷ 5,6	150 150 220	150 220 320	150 220 320
< 5,6	320	460	460

¹⁾ Peaks of 50 °F (10 °C) above and 50 °F (10 °C) (68 °F (20 °C) for synthetic oil) below the ambient temperature range are acceptable.

An overall guide to **oil-change interval** is given in the table, and assumes pollution-free surroundings. Where heavy overloads are present, halve the values.

Oil	Oil-change	interval [h]
temperature [°F] (°C)	mineral oil	synthetic oil
≤ 149 (65)	8 000	25 000
149 (65) ÷ 176 (80)	4 000	18 000
176 (80) ÷ 203 (95)	2 000	12 500

14 - Installation and maintenance

Combined gear reducer and gearmotor units: lubrication remains independent, thus data relative to each single gear reducer hold good.

Seal rings: duration depends on several factors such as dragging speed, temperature, ambient conditions, etc.; as a rough guide; it can vary from 3 150 to 12 500 h.

Warning: for gear reducers sizes 100 ... 180, before unscrewing the filler plug with valve (symbol -) wait until the unit has cooled and then open with caution.

Motor replacement

As all gearmotors are fitted with **standard** motors, motor replacement in case of breakdown is extremely easy. Simply observe the following instructions:

- ensure that the mating surfaces are machined under accuracy rating (UNEL 13501-69; DIN 42955);
- clean surfaces to be fitted, thoroughly;
- check, and if necessary, lower the parallel key so as to leave a clearance of 0,00394 ÷ 0,0079 in between its tip and the bottom of the keyway of the hole; when shaft keyway is without end, lock the key with a pin;
- Check that the fit-tolerance of bore-and-shaft end (standard locking) is K6/j6 for D ≤ 28 1,102 in, J6/k6 for D ≥ 1,5 in; the length of the parallel key is to be at least 0,9 the face width of the pinion;
- ensure that motor bearings and overhangs (dimension S) are as shown in the table;

Motor size	Min. dynamic lo	Max dimension 'S'	
	Front	Rear	inch.
63	1 012	335	0,6
71	1 416	1 068	0,71
80	2 023	1 506	0,79
90	2 967	2 248	0,89
100	4 496	3 372	0,98
112	5 620	4 271	1,1
132	7 981	5 957	1,32
160	10 678	7 531	1,48
180	14 163	10 116	1,57
200	17 985	12 589	1,77
225	22 481	15 962	1,87
250	28 101	20 233	2,09
280	35 970	25 179	2,2

- mount the spacer (with rubber cement; check that between keyway and motor shaft shoulder there is a grounded cylindrical part of at least 0,06 in) and the pinion (the latter to be preheated to a temperature of 176 ÷ 212 °F (80 ÷ 100 °) on the motor, locking the assembly with either a bolt to the shaft butt-end, or a stop collar;
- lubricate the pinion toothing, and the sealing ring and its rotary seating with grease, assembling with extreme care.

Systems of motor-gear reducer mounting

The strength and shape of casing offer **advantageous** systems of motor-gear reducer mounting: gearmotor with belt drive, mechanic or hydraulic coupling.

15 - Accessories and non-standard designs

Strengthened high speed shaft bearings

Gear reducer R 2I sizes 50, 63, 80 and sizes 51, 64, 81 with $i_{\rm N} \ge 16$ and R 3I sizes 63 ... 101 can be supplied with cylindrical roller bearings on high speed shaft so as to allow high radial loads, values **x** 1,6 (ch. 11); this design is standard for all remaining gear reducers, which present cylindrical roller or taper roller bearings as a standard.

Supplementary description when ordering by **designation**: **streng-thened high speed shaft bearings**.

Non-standard low speed shaft end

The gear reducers and gearmotors size 40 ... 101 can be supplied with non-standard low speed shaft end; dimensions as per following table.

Gear reducer	D ∅	E	d Ø size	Linguetta b x h x l
40	0,787 g6	1,57	M6	0,236 x 0,236 x 1,417
41	0,787 j6	1,42	M6	0,236 x 0,236 x 0,984
50	0,984 j6	1,97	M8	0,315 x 0,275 x 1,771
51	0,984 j6	1,65	M8	0,315 x 0,275 x 1,471
63, 64	1,181 k6	2,28	M10	0,315 x 0,275 x 1,771
63	1,377 g6	2,28	M10	0,393 x 0,315 x 1,968
64	1,377 k6	2,28	M10	0,393 x 0,315 x 1,968
80	1,574 g6	3,15	M12	0,472 x 0,315 x 2,756
81	1,574 k6	3,15	M12	0,472 x 0,315 x 2,756
100	1,968 g6	3,23	M12	0,551 x 0,354 x 2,756
101	1,968 k6	3,23	M12	0,551 x 0,354 x 2,756

Supplementary description when ordering by **designation**: **non-standard low speed shaft end, D** ... (dimension D \emptyset).

Oversized B5 flange (low speed shaft)

All gear reducers and gearmotors (sizes ≥ 50) can be supplied with oversized B5 flange (always having through holes) fitted on standard B5 flange. Flange plane coincides with low speed shaft end shoulder.

The gear reducer is to be fastened after having fastened the flange on the machine.

Locking adhesives such as LOCTITE, should be used both on screws and coupling surfaces.

Gear reducer size	F Ø	M Ø	N Ø	P ∅	Q	S	S ₁
			h6				1)
50, 51	0,4	6,5	5,118	7,87	0,14	0,5	0,2
63, 64	0,5	8,46	7,087	9,84	0,16	0,6	0,3
80, 81	0,6	10,43	9,055	11,81	0,16	0,6	0,4
100, 101	0,7	11,81	9,843	13,78	0,20	0,7	0,4
125, 126, 140	0,7 ⁸	15,75	13,78	17,72	0,20	0,7	_
160, 180	0,7 ⁸	19,69	17,717	21,65	0,20	0,8	_

¹⁾ Screw type UNI 5931-84

Supplementary description when ordering by designation: oversized B5 flange.

Square flange for servomotors

Gearmotors MR 2I, 3I sizes 32 ... 101 can be supplied with motor mounting flange when coupling with servomotors; the first reduction pinion directly keyed onto motor shaft end permits to avoid backlash and consequently shock on the same keying.

Considering that servomotors do not have any standardized dimensions, when selecting verify all coupling dimensions stated in the table; **D** dimension determines IEC stardardized motor size in catalogue gearmotor designation (see ch. 3, 8).

For other gearmotor dimensions see ch. 9.

For the **verifications** of keying, motor mounting flange and motor bearing resistance according to motor performances, speed, mass and length, **consult us**.

Ge reduc	V ,	F	M, Ø	N ₁	P ₁	Q,	D Ø	E	
21	31				h7				
40 40, 41	40, 41 40 51	3,54	M 6	3,94	3,15	4,72	0,16	0,43 0,55	0,91 1,18
32 40 51 40 64	- 50 64 50 64	4,13	M 8 ¹⁾	4,53	3,74	5,51	0,16	0,43 0,55 0,75	0,91 1,18 1,57
40 51 40 64 50 81	50 64 50 81 63 81	4,72	M 8	5,12	4,33	6,3	0,18	0,55 0,75 0,94	1,18 1,57 1,97
- 63 81 63, 64	80, 81 63 101 –	5,71	M 10	6,5	5,12	7,68	0,18	0,75 0,94 1,1	1,57 1,97 2,36
80 101	80 101	7,67	M 12	8,46	7,09	9,84	0,20	1,1	2,36

¹⁾ For sizes 40, 41 No. 2 M6 and No. 2 M8.

Supplementary description when ordering by **designation**: **square flange** ... — ... (state V₁ — D dimension; e.g.: 145-24).

Examples of coaxial servogearmotors with synchronous "brushless" and asynchronous "vector" servomtors of cat. SR.

For sizes 50, 51: 2 upper holes of motor flange must be slotted (see ch. 2b).

15 - Accessories and non-standard designs

Design for agitators and aerators

This design has been specifically developed for aerators and agitators. In addition to the rigid and precise **monolithic** casing, **universal** mounting, taper roller bearings (sizes 125 ... 180), the main features of this **reliable compact and economic** design are:

- extended bearing housing to improve radial and axial load ratings (sizes ≥ 125: taper roller bearings) and to reduce overhangs;
- plentiful low speed shaft end diameter;
- double seals on the low speed shaft with chromium plated raceway;
- space between double seals packed with grease and top hat arrangement which acts as water splash guard for aerators;
- oil lubricated bearing on low speed shaft end side; additional stainless steel drain plug to facilitate complete oil drainage; all this ensures total reliability (gear pairs and bearings) during running and minimum maintenance;
- special single compound paint: antirust zinc primer plus blue RAL 5010 DIN 1843 synthetic paint.

Options

- drip proof cover for motor (standard protection IP 55);
- special dual compound paint;
- remote oil level and/or oil temperature indicator with threshold signal (sizes ≥ 160).

Axial load $F_{\rm a2}$ on low speed shaft end can be doubled according to direction of rotation for combinations **2** (as shown in the table) which are to be **preferred**.

Gear reducer size			E	G Ø	X ≈	Axial lo		oad F _{a2}	
					1)	▽ - →	<u> </u>	 	
80, 81 100, 101 125, 126	4,41 5,39 5,47	1,772 k6 2,165 m6 2,756 m6	3,23		_ _ 0,12	1 2 1	2 1 2	2 1 2	1 2 1
140 160 180	5,51 6,61 6,22	3,15 m6 3,543 m6 3,937 m6			0,12 0,16 0,16	1 2 2	2 1 1	2 1 1	1 2 2

¹⁾ Thickness of protection disc.

Supplementary description when ordering by **designation**: **design for agitators**.

Miscellaneous

- Gearmotors with:
 - HFV (also single-phase) brake motor with d.c. safety and/or parking brake (sizes 63 ... 132) having overall dimensions nearly the same of a standard motor and braking torque $M_{\rm f} \ge M_{\rm N}$, maximum economy; suitable for running with inverter, non-standard designs with axial independent cooling fan and/or encoder (see ch. 2b);
 - two-speed motor, HF standard motor, F0 and HFV brake motors: 2.4, 2.6, 2.8, 2.12, 4.6, 4.8, 6.8 poles;

- motor featuring: d.c. supply; single-phase; explosion-proof; with second shaft end; with non-standard protection, voltage and frequency; provided with devices against overloads and overheating;
- motor without fan externally cooled by natural convection (sizes 63 ... 112); design for textile industry.
- MLA and MLS unit, mechanical torque limiter on input shaft, motor sizes 80 ... 200 (180 for MLS).

Mechanical torque limiter unit to be interposed between gear reducer and B5 mounting position motor standardized to IEC (or wide belt or planetary motor-variator) or, in **combined units**, between the initial gear reducer and the final gear reducer.

Axially ultra-compact design: excellent load bearing with life lubricated double row angular contact ball bearings (motor size ≤ 112) or «O» disposed taper roller bearings.

The unit protects the drive from accidental overloads by excluding inertia loads transmitted from up-line masses and down-line masses.

LA unit is friction type (friction surfaces without asbestos). When the transmitted torque tends to exceed the setting, the drive «slips» although **it remains** engaged and transmits torque equal to the limiter setting value; slipping stops as soon as the load returns to normal; in the case of very brief overloads the driven machine will continue normal operation (after decelerating or stopping) without requiring reset procedures.

LS unit is ball type. When the transmitted torque tends to exceed the setting, the drive is "disengaged" so **it does not remain** connected. The driven machine will therefore stop.

LA and LS units are mechanically interchangeable. On request slide detector. For more details see **specific literature**.

15 - Accessories and non-standard designs

MLS / MLA mounted between gear reducer and motor or motor-variator

* on request

- Gearmotors with interposed compact clutch-brake or fluid coupling/brake unit.

Gear reducers (i = 3,17 and 6,38) and gearmotors (i = 2 and 2,55) sizes 100 and 125 with 1 cylindrical gear pair, flange mounting; motor sizes 132 ... 200.
 Taper roller bearings on low speed shaft, «O» disposition for high external loads. Minimum axial overall dimensions.

- Semi-flexible low speed shaft couplings.
- Special paint options:
- external, single-compound: antirust zinc primer plus blue RAL 5010 DIN 1843 synthetic paint (excluding 32 ... 41);
- external, dual-compound: dual-compound epoxy-polyamidic antirust primer plus dual-compound blue RAL 5010 DIN 1843 polyurethane enamel;
- internal, dual-compound: unaffected by polyglycol synthetic oils (sizes 100 ... 180).
- Special seal rings; double seal.

This page is intentionally left blank.

21 50 ... 101

2l 125 ... 180

31 50 ... 101

31 125 ... 180

Rossi S.p.A. Via Emilia Ovest 915/A 41123 Modena - Italy

Phone +39 059 33 02 88

info@rossi.com www.rossi.com

2611.CRP.CAT.A.us-en.COR.01.01

© Rossi S.p.A. Rossi reserves the right to make any modification whenever to this publication contents. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described.

The Customer is responsible for the correct selection and application of product in view of its industrial and/or commercial needs, unless the use has been recommended by technical qualified personnel of Rossi, who were duly informed about Customer's application purposes. In this case all the necessary data required for the selection shall be communicated exactly and in writing by the Customer, stated in the order and confirmed by Rossi. The Customer is always responsible for the safety of product applications. Every care has been taken in the drawing up of the catalog to ensure the accuracy of the information contained in this publication, however Rossi can accept no responsibility for any errors, omissions or outdated data. Due to the constant evolution of the state of the art, Rossi reserves the right to make any modification whenever to this publication contents. The responsibility for the product selection is of the Customer, excluding different agreements duly legalized in writing and undersigned by the Parties.