E series

Rossi
 Habasit Group

Coaxial gear reducers and gearmotors
Imperial units - North America Issue

1 - Symbols	2
2 - Specifications	4
3 - Designation	9
4 - Service factor fs	10
5 - Selection	10
6 -(gominal powers and torques 13 7 - Designs, dimensions, mounting positions 17 8 and lubricant quantities	

$9-$Designs, dimensions, mounting positions and lubricant quantities	41
$10-$Combined gear reducer and gearmotor units	43
11 - Radial loads $F_{\mathrm{r} 1}$ on high speed	
shaft end	

Further technical information

In the event that you require further technical information regarding any of the under mentioned subjects:

- shaft mounting arrangements;
- oversized hollow low speed shaft;
- square flange for servomotors;
- shaft-mounting arrangements;
- fan cooling;
- bearings lubrication pump;
- bi-metal type thermostat;
- hollow low speed shaft washer;
- hollow low speed shaft washer with locking rings or bush;
- hollow low speed shaft protection;
- design for agitators, aerators, fans;
- design for extruders;
please refer to our detailed product catalogues available by contacting Rossi.

1-Symbols

L_{WA}	$[\mathrm{dB}(\mathrm{A})]$	sound power level;	$F_{\mathrm{r} 1}$	$[\mathrm{lb}]$
L_{pA}	$[\mathrm{dB}(\mathrm{A})]$	mean sound pressure level; η	-	efficiency of the gear reducer;
Z	$[\mathrm{start} / \mathrm{h}]$	frequency of starting;	$F_{\mathrm{r} 2}$	$[\mathrm{lb}]$

Coaxial gear reducers and gearmotors

Combined gear reducer and gearmotor units

MR $\mathbf{3 I}+\mathbf{R} \mathbf{2 1}, \mathbf{3 I}$

MR 31 + MR 2I, 31

2-Specifications

Universal mounting (patented; lower feet, upper feet, B5 flange with low speed shaft end shifted forward) see fig. 1
Closer intermediate size steps (for size pairs, standard and strengthened, only one casing and many components in common, changing only the ones allowing higher performances of greater size; improved modular construction) offering sizes closer to every application need and maintaining nearly the same component number for maximum economy of solution; same mounting dimensions for the size pairs
Rigid and precise cast iron monobloc casing (excluding sizes $32 \ldots 41$)
Generously proportioned bearings of low speed shaft (bearings and shaft) in order to withstand high loads on shaft end Possibility of mounting large size motors Possibility of square flanges for servomotors Manufacturing and product management flexibility

High manufacturing quality standard
Minimum maintenance requirements Standard motor to IEC
High, reliable and tested performances
Pinion of final reduction with three bearings (excluding sizes $32 \ldots 41$) in order to ensure best meshing conditions (no overhang wheel; maximum rigidity and overloading capacity, maximum reduction of noise level)
This range of gear reducers and gearmotors combines and exalts the traditional qualities of coaxial gear reducers - compactness, economy -, with the ones deriving from modern design, manufacturing and operating criteria - strength and suitability also for heaviest applications, universality and ease of application, wide range of sizes, service - the advantages typically associated with high quality gear reducers produced in large series.

a-Gear reducer

Structural features

Main specifications are:

- universal mounting (patented) with lower and upper feet and B5 flange integral with casing (excluding sizes 32 ... 41 whose mounting is either with feet or with flange always integral with casing);
- Iow speed shaft end shifted forward (excluding size 40) compared to flange plane, for smaller overhang having same position of external radial load;
- modern conception according to ROSSI MOTORIDUTTORI new modular system see fig. 1 (improved modular construction both for component parts and assembled product);
- maximum compactness and reduced overall dimensions - and equal for 21 and 31 - especially in longitudinal direction; coaxial low and high speed shafts excluding sizes 140 ... 180 for which they are slightly misaligned (see ch. 7 and 10);
- monolithic cast iron casing 200 UNI ISO 185 (excluding sizes 32 ... 41) with stiffening ribs and high lubricant capacity;
- gear reducer overall sized so as to accept particularly powerful motors, to permit the transmission of high nominal and maximum torques and to withstand high loads on high and low speed shaft ends;
- cylindrical roller or ball bearings on intermediate shafts duly sized for every condition;
- bearings of low speed shaft (see table 1) generously proportioned in order to whitstand high loads on low speed shaft end (which is also proportioned for the same purpose);
- pinion of final reduction with three bearings (excluding sizes $32 \ldots 41$) in order to ensure best meshing conditions (no overhang wheel, maximum rigidity and overloading capacity, maximum reduction of noise level);
- gear reducers: input face having machined flange and holes (excluding sizes 32 and 40);
- gearmotors: standard motor to IEC with pinion directly mounted onto shaft end;
- shaft end with parallel key and tapped butt-end hole;
- standard dimensions and compliance with standards;
- grease or oil-bath lubrication; with synthetic grease for sizes 32 41 or synthetic oil sizes $50 \ldots 81$ all supplied filled with lubricant for lubrication «for life" and with a plug (sizes 32 ... 64) or two plugs (sizes 80 and 81); with synthetic or mineral oil (ch. 16) with filler plug with valve, drain and level plug (sizes 100 ... 180); sealed;
- paint: external coating in epoxy powder paint (sizes $32 \ldots 41$) or synthetic paint (sizes $50 \ldots 180$) appropriate for resistance to normal industrial environments and suitable for the application of further coats of synthetic paints; colour blue RAL 5010 DIN 1843; internal protection with epoxy powder paint (sizes 32 ... 41) or epoxy paint (sizes $50 \ldots 81$) suitable to resist synthetic oils or with synthetic paint (sizes $100 \ldots$ 180) appropriate to resist mineral or polyalphaolefines synthetic oils;
- possibility of obtaining combined gear reducer and gearmotor units providing high transmission ratios;
- non-standard designs: see ch. 17.

Train of gears:

$-2,3$ cylindrical gear pairs (5, 6 in combined units);
-7 sizes with final reduction centre distance to $R 10$ series (32 125, with 6 size pairs: standard and strengthened); 3 sizes with final reduction centre distance to R 20 series (140 ... 180) for a total of 16 sizes;

- nominal transmission ratios to $R 10$ series ($6,3 \ldots 6$ 300) for gear reducers;
- output speeds close to standard number R 20 series (0,45 ... 710 min^{-1}) for gearmotors;
- casehardened and hardened gear pairs in 16 CrNi 4 or 20 MnCr 5 steel depending on size and $18 \mathrm{NiCrMo5}$ steel, according to UNI 7846-78;
- helical toothed gear pairs with ground profile;
- gears load capacity calculated for tooth breakage and pitting.

Specific standards:

- nominal transmission ratios and main dimensions according to ISO 3-73;
- tooth profiles to ISO 53-74;
- shaft heights to UNI ISO 496-73;
- fixing flanges B14 and B5 taken from IEC 72.2;
- medium series fixing holes to ISO/R 273);
- cylindrical shaft ends (long or short) to ISO/R775 with tapped buttend hole to DIN $332 \mathrm{BI} .2-70$, NF E 22.056 excluding d-D diameter ratio;
- parallel keys to ISO/R/773-69 except for specific cases of motor-togear reducer coupling where key height is reduced;
- mounting positions taken from IEC 34.7);
- load capacity verified according to DIN 3990, AFNOR E 23-015, ISO 6336 for running time $\geqslant \mathbf{1 2} \mathbf{5 0 0} \mathrm{h}$.

Sound levels L_{wA} and $\overline{\mathrm{L}}_{\mathrm{pA}}[\mathrm{dB}(\mathrm{A})]$

Standard production sound power level $\mathbf{L}_{\mathrm{wA}}[\mathrm{dB}(\mathrm{A})]^{11}$ and mean sound pressure level $\overline{\mathbf{L}}_{\mathrm{pA}}[\mathrm{dB}(\mathrm{A})]^{2)}$ (see table 2) for gearmotors assuming nominal load, and input speed $n_{1}=1400^{33} \mathrm{rpm}$. Tolerance $+3 \mathrm{~dB}(\mathrm{~A})$.
If required, gear reducers can be supplied with reduced sound levels (normally $3 \mathrm{~dB}(\mathrm{~A})$ below tabulated values); consult us.
Values in table are valid also for gear reducers.
In case of gearmotor with 4 poles 60 Hz motor (motor supplied by ROSSI MOTORIDUTTORI) add $1 \mathrm{~dB}(\mathrm{~A})$ to the values in table.

1) H, H shaft height [in]

D \varnothing low speed shaft end [in]
$M_{\mathrm{N} 2}$ nominal torque [lb in]
$F_{\text {r2 }}$ radial load [lb]
Fig. 1

Bearing	Size															
	32	40	41	50	51	63	64	80	81	100	101	125	126	140	160	180
external side	6203	6204	6205	6206	6206	6207	6208	6308	NJ210EC	6310	NJ212EC	30214	32016	32018	32021	32024
internal side	6201	6004	6203	6204	6204E	6205E	6206E	6306	NJ207EC	6308	NJ210EC	30212	32014	32016	32018	32021

Table 1

Size and train of gears	Gearmotors with 4 poles motor									
	$\mathrm{L}_{\text {WA }}{ }^{63} \bar{L}_{p A}$	$\mathrm{L}_{\text {WA }}{ }^{71} \bar{L}_{\text {pA }}$	$\mathrm{L}_{\text {wA }}{ }^{80} \bar{L}_{p A}$	$\begin{array}{cc} 90 \\ \mathrm{~L}_{\mathrm{WA}} & \bar{L}_{\mathrm{pA}} \\ \hline \end{array}$	$\begin{gathered} 100 \\ 112 \\ \mathrm{~L}_{\mathrm{WA}} \bar{L}_{\mathrm{pA}} \end{gathered}$	$\begin{gathered} 132 \\ \mathrm{~L}_{\mathrm{WA}} \quad \bar{L}_{\mathrm{pA}} \end{gathered}$	$\begin{gathered} 160 \\ 180 \frac{\mathrm{M}}{\mathrm{~L}_{\mathrm{pA}}} \end{gathered}$	180 L 200 $\mathrm{~L}_{\mathrm{WA}} \quad \bar{L}_{p A}$	$\mathrm{c}_{225}^{250}{ }_{\text {L }}{ }_{\text {L }} \bar{L}_{\text {PA }}$	$\begin{array}{cc} 280 \\ \mathbf{L}_{\mathrm{WA}} & \bar{L}_{\mathrm{pA}} \end{array}$
32, 40, $41 \begin{array}{ll}21 \\ & 31\end{array}$	$\begin{array}{ll} \mathbf{6 5} & 56 \\ \mathbf{6 5} & 55 \end{array}$	$\begin{array}{ll}67 & 58 \\ 66 & 57\end{array}$	$70-61$	-	-	-	-	-	-	-
50, $51-31$	64-55	$\begin{array}{ll}68 & 59 \\ 67 & 58\end{array}$	$\begin{array}{ll}71 & 62 \\ 70 & 61\end{array}$	$73-64$	-	-	-	-	-	-
63, $64 \quad 21$	-	$68-59$	71 70 70	$\begin{array}{ll}75 & 66 \\ 73 & 64\end{array}$	77 _ 68	-	-	-	-	-
80, 81 21	-	- -	71 - 62	$\begin{array}{ll}75 & 66 \\ 74 & 65\end{array}$	$\begin{array}{ll}79 & 70 \\ 77 & 68\end{array}$	$80-71$	-	-	-	-
$\begin{array}{ll}100,101 & 21 \\ & 31\end{array}$	-	-	-	$75-66$	79 78	$\begin{array}{ll}82 & 73 \\ 80 & 71\end{array}$	$83-74$	-	-	-
$\begin{array}{ll}125,126,140 & 21 \\ & 31\end{array}$	-	-	-	-	$79^{-} 70$	$\begin{array}{ll}83 & 74 \\ 82 & 73\end{array}$	$\begin{array}{ll}85 & 76 \\ 83 & 74\end{array}$	$87 \quad 78$	$89-80$	-
$\begin{array}{ll}160,180 & 21 \\ & 31\end{array}$	-	-	-	-	- -	$83^{-} 74$	$\begin{array}{ll} 85 & 76 \\ 84 & 75 \end{array}$	$\begin{array}{ll} 88 & 79 \\ 86 & 77 \end{array}$	$\begin{array}{ll} 90 & 81 \\ 88 & 79 \end{array}$	$92-83$

[^0]2) Mean value of measurement at 1 m from external profile of gear reducer standing in free field on a reflecting surface.
3) For $n_{1} 710 \div 1800 \mathrm{rpm}$, modify tabulated values thus: $n_{1}=710 \mathrm{rpm},-5 \mathrm{~dB}(\mathrm{~A}) ; n_{1}=900 \mathrm{rpm},-4 \mathrm{~dB}(\mathrm{~A}) ; n_{1}=1120 \mathrm{rpm},-3 \mathrm{~dB}(\mathrm{~A}) ; n_{1}=1400 \mathrm{rpm},-2 \mathrm{~dB}(\mathrm{~A})$.

Table 2

2 - Specifications

b - Electric motor

Standard design:

- standard motor to IEC;
- asynchronous three-phase, totally-enclosed, externally ventilated, with cage rotor;
- single polarity, frequency 50 Hz , voltage $\Delta 230 \mathrm{~V}$ Y $400 \mathrm{~V} \pm 10 \%^{1)}$ up to size 132, $\Delta 400 \mathrm{~V} \pm 10 \%$ from size 160 upwards;
- IP 55 protection, insulation class F, temperature rise class $B^{1)}$;
- eff2 efficiency class (except motors with power or power-to-size correspondence not according to standard);
- rated power delivered on continuous duty (S1) and at standard voltage and frequency; maximum ambient temperature $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, altitude 3280 ft : consult us if higher;
- capacity to withstand one or more overloads up to 1,6 times the nominal load for a maximum total period of 2 min per single hour;
- starting torque with direct on-line start at least 1,6 times the nominal one (usually it is higher);
- mounting position B5 and derivates as shown in the following table;
- suitable for the running with inverter (generous electromagnetic sizing, low-loss electrical stamping, phase separators, etc.).
- designs available for every application need: flywheel, independent cooling fan, independent cooling fan and encoder, etc.
For other specifications and details see specific literature.

1) Max and min limits of motor supply; temperature rise class F for some motors with power or power-to-size correspondance not according to standard and motors 200LR 6, 200 L 6.

Motor size	Main coupling dimensions UNEL 13117-71 (DIN $42677 \mathrm{BI} 1 . \mathrm{A}-65$, IEC 72.2)	
	Shaft end $\varnothing \mathrm{D} \times \mathrm{E}$	$\begin{gathered} \text { Flange } \varnothing P \\ \text { B5 } \end{gathered}$
63, $71 \mathrm{B5R}^{3)}$	0,433 $\times 0,91$	5,51 ${ }^{1)}$
71, $80 \mathrm{B5R}^{3)}$	$0,551 \times 1,18$	6,3
80, 90 B5R	0,748 $\times 1,57$	7,87 ${ }^{\text {2 }}$
90, 100L B5R ${ }^{3)}$, $112 \mathrm{B5R}^{3)}$	0,945 $\times 1,97$	7,87
100, 112, 132 B5R $^{3)}$	1,102 $\times 2,36$	9,84
132	$1,496 \times 3,15$	11,81
160	1,654 $\times 4,33$	13,78
180, 200 B5R	1,89 $\times 4,33$	13,78
200	$2,165 \times 4,33$	15,75
225, 250 B5R	2,362 $\times 5,51$	17,72
250	2,559 $\times 5,51$	21,65
280	$2,953 \times 5,51$	21,65

1) The two top holes of gearmotor MR 3I 50, 51 are slotted outwards as shown in the drawing alongside.
2) Gearmotors MR 2| 40, 41 have a 6,3 in $\varnothing P$; mounting position designation B5A
3) Motor length \mathbf{Y} and overall dimension \mathbf{Y}_{1} (ch. 9) increase by 0,55 in for size $71,0,71$ in for size 80, 0,87 in for sizes 100 and 112, 1,14 in for size 132

Brake motor (prefix to designation: F0):

- standard motor to IEC having the same specifications as normal motor;
- particularly strong construction to withstand braking stresses; maximum reduction of noise level;
- spring-loaded d.c. electromagnetic brake; feeding from the terminal box; brake can also be independently fed directly from the line;
- braking torque proportioned to motor torque (normally $M f \approx 2 M_{N}$) and adjustable by adding or removing pairs of springs;
- high frequency of starting enabled;
- rapid, precise stopping;
- hand lever for manual release with automatic return; removable lever rod.
For other specifications and details see specific literature.

Important: Two-speed motors in the following paragraph are also available in «standard brake motor» design F0 (see relevant table); combinations and gearmotor performance data therefore are the same of ch. 8 .

Short time duty (S2) and intermittent periodic duty (S3); duty cycles S4 . S10

In case of a duty-requirement type S2 ... S10 the motor power can be increased as per the following table; starting torque keeps unchanged.
Short time duty (S2). - Running at constant load for a given period of time less than that necessary to reach normal running temperature, followed by a rest period long enough for motor's return to ambient temperature.
Intermittent periodic duty (S3). - Succession of identical work cycles consisting of a period of running at constant load and a rest period. Current peaks on starting are not to be of an order that will influence motor heat to any significant extent.

Cyclic duration factor $=\frac{N}{N+R} \cdot 100 \%$
where: N being running time at constant load,
R the rest period and $N+R=10 \mathrm{~min}$ (if longer consult us).

Duty			Motor size ${ }^{1)}$		
S2	duration of running	90 min	1	1	1,06
		60 min	1	1,06	1,12
		30 min	1,12	1,18	1,25
		10 min	1,25	1,25	1,32
S3	cyclic duration factor	60\%		1,06*	
		40\%		1,12*	
		25\%		1,25	
		15\%		1,32	
S4 ... S10			consult us		

1) For motor sizes 90LC 4, 112MC 4, 132MC 4, consult us.

* These values become 1,12, 1,18 for brake motors (both FO and FVO)

2 - Specifications

Main specifications of normal (V0 excluded) and brake motors (FV0 excluded) ($\mathbf{5 0} \mathbf{~ H z) ~}$

$\begin{aligned} & \text { Motor } \\ & \text { size } \end{aligned}$		2 poles - $3400 \mathrm{rpm}^{17}$				4 poles - $1700 \mathrm{rpm}^{1}{ }^{\text {(}}$				6 poles - $1100 \mathrm{rpm}^{11}$			
	$M f_{\text {max }}$	P_{1}	J_{0}	z_{0}	$M_{\text {siar }}$	P_{1}		Z_{0}	$\begin{gathered} M_{\text {slart }} \\ M_{N} \end{gathered}$	P_{1}	J_{0}	Z_{0}	$M_{\text {start }}$ M_{N}
	$\begin{aligned} & \text { lb in } \\ & \text { 2) 4) } \end{aligned}$	hp	$\begin{aligned} & \text { lb ft2 } \\ & \text { 2) } \end{aligned}$	3)	3)	hp	lb ft2 2)	3)		hp	lb ft2 2)	3)	3)
63 A	30	0,25	0,00470	4750	2,5	0,16	0,0047	12500	2,9	0,12	0,0094	12500	2,7
63 B	30	0,33	0,00705	4750	2,7	0,25	0,0071	12500	2,8	0,16	0,0094	12500	2,7
63 C	30	0,50	0,00705	4000	3	0,33	0,0071	10000	2,6	-	-	-	-
71 A	65	0,5	0,00940	4000	3	0,33	0,0118	10000	2,6	0,25	0,0282	11200	2,4
71 B	65	0,75	0,01175	4000	3	0,5	0,0165	10000	2,5	0,33	0,0282	11200	2,1
71 C	65	1	0,01410	3000	2,8	0,75	0,0188	8000	2,4	0,5	0,0306	10000	2,1
80 A	140	1	0,01880	3000	2,5	0,75	0,0353	8000	2,6	0,5	0,0447	9500	2,1
80 B	140	1,5	0,02585	3000	2,2	0,75	0,0447	7100	2,9	0,75	0,0564	9000	2,1
80 C	140	2	0,03055	2500	2,9	1,5	0,0588	5000	3	1	0,0776	7100	2,1
80 D	-	-	-	-	-	2	0,0664	5000	2,7	-	-	-	-
90 S	140	2	0,03055	2500	2,9	1,5	0,0588	5000	3	1	0,0776	7100	2,1
90 SB	140	2,5	0,03290	2500	2,8	-	-	-.	-	-	,	-	-
90 L	140	,		-	-	2	0,0964	4000	2,7	1,5	0,1175	5300	2,3
90 LA	355	3	0,03995	2500	2,9	-	,	-	-		-	-	-
90 LB	355	4	0,00447	1800	2,8	2,5	0,1034	4000	2,7	-	-	-	-
90 LC	355	-	-	-	-	3	0,1128	3150	2,8	2	0,1293	5000	2,5
100 LA	355	4	0,08226	1800	2,7	3	0,1199	3150	2,6	2	0,2444	3550	2,6
100 LB	355	5,4	0,10811	1500	3,9	4	0,1622	3150	2,9	2,5	0,2773	3150	2,5
112 M	670^{5}	5,4	0,10811	1500	3,9	5,4	0,2280	2500	3,1	3	0,3337	2800	2,9
112 MB	355	7,5	0,12691	1400	3,9	-	-	-	-	-	-	-	-
112 MC	670	10	0,17861	1060	3,9	7,5	0,2703	1800	3,1	4	0,3972	2500	2,9
132 S	670	-	-	-	-	7,5	0,5076	1800	3	4	0,5076	2360	2,3
132 SA	670	7,5	0,23267	1250	2,4	-	-	-	-	-	-	-	-
132 SB	670	10	0,27732	1120	3	-	-	-	-	-	-	-	-
132SC	670	12,5	0,32197	1060	3,7	-	-	-	-	-	-	-	-
132 M	1320	15	0,41833	850	3,7	10	0,7591	1180	3,2	5,4	0,7591	1420	2,9
132 MB	1320	20	0,53114	710	3,8	12,5	0,9189	1070	3	7,5	0,9189	1260	2,6
132 MC	1320	-	-	-	-	15	0,9965	900	3,4	10	1,2503	1000	2,4
160 MR	2240	15	0,91657	450	2,1	-	-	-	-	-	-	-	-
160 M	2240	20	1,03408	425	2,4	15	1,6921	900	2	10	2,2562	1120	2
160 L	2240	25	1,15159	400	2,6	20	1,9741	800	2,3	15	2,7967	950	2,3
180 M	2240	30	1,33960	355	2,5	25	2,3267	630	2,3	-	-	-	-
180 L	3550	-	-	-	-	30	3,0552	500	2,4	20	3,5253	630	2,3
200 LR	3550	40	0,43478	160	2,4	-	-	-	-	25	4,4653	500	2,1
200 L	3550	50	4,70035	160	2,5	40	4,7004	400	2,4	30	5,6404	400	2,4
200 LG	-	-		-	-	50	7,9906	-	2,3	-	-	-	-
225 S	-	-	-	-	-	50	7,5206	-	2,3	-	-	-	-
225 M	-	-	-	-	-	60	9,6357	-	2,4	40	11,0458	-	2,4
250 M	-	-	-	-	-	75	12,2209	-	2,3	50	13,3960	-	2,6
280 S	-	-	-	-	-	100	21	-	2,5	60	20	-	2,4

1) Motor speed on the basis of which the gearmotor speeds n_{2} have been calculated.
2) Moment of inertia values J_{0}, braking torque values Mf are valid for brake motor (size $\leqslant 200 \mathrm{~L}$), only.
3) For size $\leqslant 132, M_{\text {start }} / M_{N}$ values and no load starting frequency z_{0} [start/h] values are valid for brake motor, only.
4) Motor is usually supplied with lower braking torque setting (see specific literature).
5) For 2 poles 4 daN m.

Frequency of starting z

As a general rule, the maximum permissible frequency of starting z for direct on-line start (maximum starting time $0,5 \div 1 \mathrm{~s}$) is 63 starts/h up to size 90 (valid also for V0), 32 starts/h for sizes 100 ... 132 and 16 starts/h for sizes 160 ... 280 (star-delta starting is advisable for sizes 160 .. 280).
Brake motors can withstand a starting frequency double that of normal motors as described above FV0 included).
A greater frequency of starting z is often required for brake motors (FVO excluded). In this case it is necessary to verify that:

$$
z \leqslant z_{0} \cdot \frac{J_{0}}{J_{0}+J} \cdot\left[1-\left(\frac{P}{P_{1}}\right)^{2} \cdot 0,6\right]
$$

where

z_{0}, J_{0}, P_{1} are shown in the tables at pages 10 and 11
J is the external moment of inertia (of mass) in $\mathrm{kg} \mathrm{m}^{2}$, (gear reducers, couplings, driven machine) referred to the motor shaft:
P is the power in kW absorbed by the machine referred to the motor shaft (therefore taking into account efficiency)
If during starting the motor has to overcome a resisting torque, verify the frequency of starting by means of the following formula

Specific standards:

- nominal powers and dimensions to IEC 72-1, for mounting positions IM B5, IM B14 and derivates;
- nominal performances and running specifications to IEC 34-1;
- protection to IEC 34-5;
- mounting positions to IEC 34-7;
- sound levels to CENELEC 60034-9 (IEC 34.9, DIN 57530 pt. 9);
- balancing and vibration velocity (vibration under standard rating N) to IEC 34-14; motors are balanced with half key inserted into shaft extension;
- cooling to IEC 34-6: standard type IC 411; type IC 416 for nonstandard design with axial independent cooling fan.

$$
z \leqslant 0,63 \cdot z_{0} \cdot \frac{J_{0}}{J_{0}+J} \cdot\left[1-\left(\frac{P}{P_{1}}\right)^{2} \cdot 0,6\right]
$$

3 - Designation

The designation is to be completed by stating mounting position, only when differing from B3 ${ }^{1 \text {) }}$ or $\mathbf{B 5}$ (for sizes $32 \ldots 41$, only).
E.g.: R 2150 UC2A/24,1 mounting position B8;

MR 31140 UC2A - 160M 4380 B5/68,6 mounting position V5.
Where brake motor is required, insert the letters F0.
E.g.: MR 3151 UC2A - F0 80B 4230.400 B5/61,6

Where progressive start motor is required, insert the letters V0 before motor size.
E.g.: MR 3150 UC2A - V0 80A 2230.400 B5/135

Where progressive start brake motor is required, insert the letters FV0
before motor size.
E.g.: MR 3I 50 UC2A - FV0 80A 2.4400 B5/135-67,4

R gear reducer
MR gearmotor
$2 \mid$
31
2 cylindrical gear pairs
3 cylindrical gear pairs
32 ... 180 final reduction centre distance [mm]
U universal (sizes 50 ... 180)
P foot (sizes $\left.32 \ldots 41^{2 i}\right)$
F flange (sizes $32 \ldots 41^{22}$)
C coaxial

1,2
(see ch. 7, 9)

A
standard

63A ... 280S

2 ... 6; 2.4 ... 2.12
230.400

400
size $\leqslant 132$
size $\geqslant 160$ or two speed motors
B5
B5A
B5R for size 80 coupled with MR 21 40, 4 B5R for some combinations (see ch. 9)

Where the motor is supplied by the Buyer, omit voltage, and add: motor supplied by us
E.g.: MR 3151 UC2A - 80B $4 \ldots$... B5/61,6 motor supplied by us.

In the event of a gear reducer or gearmotor being required in a design differing from those stated above, specify it in detail (ch. 15).

1) To make things easier, the designation of mounting position (see ch. 7,9) is referred to foot mounting only, even if gear reducers are in universal mounting (excluding sizes 32 ...41).
2) Size 41 available as gearmotor only.

4 - Service factor fs

Service factor fs takes into account the different running conditions (nature of load, running time, frequency of starting, other considerations) which must be referred to when performing calculations of gear reducer selection and verification.

The powers and torques shown in the catalogue are nominal (i.e. valid for $f s=1$) for gear reducers, corresponding to the f s indicated for gearmotors.
Details of service factor, and considerations
Given $f s$ values are valid for:

- electric motor with cage rotor, direct on-line starting up to $12,5 \mathrm{hp}$, star-delta starting for higher power ratings; for direct on-line starting above 12,5 hp or for brake motors, select fs according to a frequency of starting double the actual frequency; for internal combustion engines multiply fs by 1,25 (multicylinder) or 1,5 (singlecylinder);
- maximum time on overload 15 s ; on starting 3 s ; if over and/or subject to heavy shock effect, consult us;
- a whole number of overload cycles (or start) imprecisely completed in 1, 2, 3 or 4 revolutions of low speed shaft; if precisely a continous overloads should be assumed;
- standard level of reliability; if a higher degree of reliability is required (particularly difficult maintenance conditions, key importance of gear reducer to production, personnel safety, etc.) multiply fs by $\mathbf{1 , 2 5} \div \mathbf{1 , 4}$
Motors having a starting torque not exceeding nominal values (stardelta starting, particular types of motor operating on direct current, and single-phase motors), and particular types of coupling between gear reducer and motor, and gear reducer and driven machine (flexible, centrifugal, fluid and safety couplings, clutches and belt drives) affect service factor favourably, allowing its reduction in certain heavy-duty applications; consult us if need be.

Service factor based: on the nature of load and running time (this value is to be multiplied by the values shown in the tables alongside).

Nature of load of the driven machine		Running time [h]				
Ref.	Description	$\begin{aligned} & 3150 \\ & \leq 2 \mathrm{~h} / \mathrm{d} \end{aligned}$	6300 $2 \div 4 \mathrm{~h} / \mathrm{d}$	$\begin{aligned} & 12500 \\ & 4 \div 8 \mathrm{~h} / \mathrm{d} \end{aligned}$	$\begin{aligned} & 25000 \\ & 8 \div 16 \mathrm{~h} / \mathrm{d} \end{aligned}$	$\left\|\begin{array}{c} 50000 \\ 16 \div 24 \mathrm{~h} / \mathrm{d} \end{array}\right\|$
a	Uniform	0,8	0,9	1	1,18	1,32
b	Moderate overloads (1,6 \times normal)	1	1,12	1,25	1,5	1,7
c	Heavy overloads (2,5 \times normal)	1,32	1,5	1,7	2	2,24

...: on frequency of starting referred to the nature of load.

a-Gear reducer

Determining the gear reducer size

- Make available all necessary data: required output power P_{2} of gear reducer, speeds n_{2} and n_{1}, running conditions (nature of load, running time, frequency of starting z, other considerations) with reference to ch. 4.
- Determine service factor fs on the basis of running conditions (ch. 4).
- Select the gear reducer size (also, the train of gears and transmission ratio i at the same time) on the basis of n_{2}, n_{1} and of a power $P_{\mathrm{N} 2}$ greater than or equal to $P_{2} \cdot f s$ (ch. 6).
- Calculate power P_{1}, required at input side of gear reducer using the formula $\frac{P_{2}}{\eta}$, where $\eta=0,96 \div 0,94$ is the efficiency of the gear reducer (ch. 13).
When for reasons of motor standardization, power P_{1} applied at input side of gear reducer turns out to be higher than the power required (considering motor/gear reducer efficiency), it must be certain that this excess power applied will never be required, and frequency of starting z is so low as not to affect service factor (ch. 4).
Otherwise, make the selection by multiplying $P_{\mathrm{N} 2}$ by $\frac{P_{1} \text { applied }}{P_{1} \text { required }}$.
Calculations can also be made on the basis of torque instead of power; this method is even preferable for low n_{2} values.

Verifications

- Verify possible radial loads $F_{r 1}, F_{r 2}$ by referring to instructions and values given in ch. 11 and 12.
- When the load chart is available, and/or there are overloads - due to starting on full load (mainly for high inertias and low transmission ratios), braking, shocks, gear reducers in which the low speed shaft becomes driving member due to driven machine inertia, or other static or dynamic causes - verify that the maximum torque peak (ch. 13) is always less than 2. $M_{N 2}$; if it is higher or cannot be evaluated in the above cases, install a safety device so that $2 \cdot M_{\mathrm{N} 2}$ will never be exceeded.
- Verify, when $f s<1$, that torque M_{2} is less or equal to $M_{N 2}$ value valid for $n_{1} \leqslant 90 \mathrm{rpm}$ (see page 16).

Designation for ordering

When ordering give the complete designation of the gear reducer as shown in ch. 3. The following information is to be given: design and mounting position (only when different from B3 or B5) (ch. 7); input speed n_{1} if greater than 1400 rpm or less than 355 rpm ; possible non-standard designs (ch. 15).
E.g.: R 2150 UC2A/24,1 mounting position B8

R 21100 UC2A/8,11 design for agitators
$n_{1}=1800 \mathrm{rpm}$.

5 - Selection

b - Gearmotor

Determining the gearmotor size

- Make available all necessary data: required output power P_{2} of gearmotor, speed n_{2}, running conditions (nature of load, running time, frequency of starting z, other considerations) with reference to ch. 4.
In the case of gearmotors for traverse movements it is important when determining required power P_{2} not to overstimate, and to take into account starting torque (see «Considerations on selection»): normally consider motor power for duty S3.
- Determine service factor $f s$ on the basis of running conditions (ch. 4).
- Select the gearmotor size on the basis of n_{2}, fs and of a power P_{1} greater than or equal to P_{2} (ch. 8)
If power P_{2} required is the result of a precise calculation, the gearmotor should be selected on the basis of a power P_{1} equal to or greater than $\frac{P_{2}}{\eta}$, where $\eta=0,96 \div 0,94$ is gear reducer efficiency (ch. 13). The torque value M_{2} has been calculated taking into account efficiency. When for reasons of motor standardization, power P_{1} available in catalogue is much greater than the power P_{2} required, the gearmotor can be selected on the basis of a lower service factor ($f s \cdot \frac{P_{2} \text { required }}{P_{1} \text { available }}$) provided it is certain that this excess power available will never be required and frequency of starting z is low enough not to affect service factor (ch. 4).
Calculations can also be made on the basis of torque instead of power; this method is even preferable for low n_{2} values.

Verifications

- Verify possible radial load $F_{\mathrm{r} 2}$ referring to directions and values given in ch. 12.
- For the motor, verify frequency of starting z when higher than that normally permissible, referring to directions and values given in ch. 2 b ; this will normally be required for brake motors only.
- When a load chart is available, and/or there are overloads - due to starting on full load (especially with high inertias and low transmission ratios), braking, shocks, gear reducers in which the low speed shaft becomes driving member due to driven machine inertia, or other static or dynamic causes - verify that the maximum torque peak (ch. 13) is always less than $2 \cdot M_{\mathrm{N} 2}\left(M_{\mathrm{N} 2}=M_{2} \cdot f \mathrm{~s}\right.$, see ch. 8); if it is higher or cannot be evaluated in the above instances, install suitable safety devices so that $2 \cdot M_{\mathrm{N} 2}$ will never be exceeded.

Designation for ordering

When ordering give the complete designation of the gearmotor as shown in ch. 3. The following information is to be given: design and mounting position of gearmotor (only if different from B3 or B5) (ch. 9), voltage and mounting position of motor (B5 or B5A or B5R), and non-standard designs, if any (ch. 15).
E.g.: MR 3150 UC2A - 80A 4230.400 B5/67,4 mounting position B8
MR 3I 50 UC2A - F0 80A 4230.400 B5/67,4
MR 3I 140 UC2A - 160L 4400 B5/68,6 $2^{\text {nd }}$ motor shaft end
Where motor is supplied by the Buyer, do not specify voltage, and complete the designation with the words: motor supplied by us.
E.g.: MR 3I 140 UC2A - 160L 4 ... B5/68,6 motor supplied by us.

The motor supplied by the Buyer must be to UNEL standards with mating surfaces machined under accuracy rating (UNEL 13501-69) and is to be sent carriage and expenses paid to our factory for fitting to the gear reducer.

c- Combined gear reducer and gearmotor units

Combined units are obtained by coupling together normal single gear reducers and/or gearmotors so as to produce low output speeds.

Determining the final gear reducer size and the combined unit

- Make available all necessary data relating to the output of the final gear reducer: required torque M_{2}, speed n_{2}, running conditions (nature of load, running time, frequency of starting z, other considerations) with reference to ch. 4.
- Determine service factor fs on the basis of running conditions (ch. 4).
- Select the final gear reducer size and basic reference, and the initial gear reducer or gearmotor size (ch. 11) on the basis of a torque value $M_{\mathrm{N} 2}$ greater than or equal to $M_{2} \cdot f$ s.

Selection of initial gear reducer or gearmotor

- Calculate the speed n_{2} and the required power P_{2} at the initial gearmotor output using the following formulae:

$$
\begin{gathered}
n_{2} \text { initial }=n_{2} \text { final } \cdot i \text { final } \\
P_{2} \text { initial }=\frac{M_{2} \text { final } \cdot n_{2} \text { final }}{63025 \cdot \eta \text { final }}[\mathrm{hp}]
\end{gathered}
$$

- In the case of gear reducer, make available input speed n_{1} at the input of the initial gear reducer.
- Make the selection of initial gear reducer or gearmotor as shown in ch. 5 paragraph a) or b) bearing in mind that sizes are pre-established (and cannot be changed on account of couplings being standard) and that it is not necessary to verify service factor.

Designation for ordering

When ordering combined units, the single gear reducers or gearmotors must be designated separately, as indicated in ch. 5 paragraph a) or b) bearing in mind the following:

- insert the words coupled with between the final gear reducer designation and that of the initial gear reducer or gearmotor;
- always add the words without motor to the final gear reducer designation; select the design oversized B5 flange for the initial gear reducer or gearmotor (for size 63 also add - $\varnothing \mathbf{2 8}$); in case of initial gear reducer or gearmotor size 40 select with flange FC1A design.

E.g.:MR 3I 160 UC2A - 132MB 4 ... B5/28,2 without motor coupled with
$\begin{array}{ll}R & 2 l \\ \text { flod } & \text { UC2A/15,7 oversized B5 }\end{array}$ flange

MR 3I 125 UC2A - 112M 4 ... B5/41,1 without motor mounting position V6 coupled with
MR 2163 UC2A - 80B 4230.400 B5/57,7 oversized B5 flange - $\varnothing 28$, mounting position V6

Considerations on selection

Motor power

Taking into account the efficiency of the gear reducer, and other drives - if any - motor power is to be as near as possible to the power rating required by the driven machine: accurate calculation is therefore recommended.
The power required by the machine can be calculated, seeing that it is related directly to the power-requirement of the work to be carried out, to friction (starting, sliding of rolling friction) and inertia (particularly when mass and/or acceleration or deceleration are considerable). It can also be determined experimentally on the basis of tests, comparisons with existing applications, or readings taken with amperometers or wattmeters.
An oversized motor would involve: a greater starting current and consequently larger fuses and heavier cable; a higher running cost as power factor $(\cos \varphi)$ and efficiency would suffer; greater stress on the drive, causing danger of mechanical failure, drive being normally proportionate to the power rating required by the machine, not to motor power.
Only high values of ambient temperature, altitude, frequency of starting or other particular conditions require an increase in motor power.

5 - Selection

Input speed

Maximum input speed must be always $n_{1} \leqslant 2800 \mathrm{rpm}$; for intermittent duty or for particular needs higher speeds may be accepted: consult us.
For n_{1} higher than 1800 rpm , power and torque ratings relating to a given transmission ratio vary as shown in the table alongside. In this case no loads should be imposed on the high speed shaft end.
For variable n_{1}, the selection should be carried out on the basis of $n_{1 \text { max }}$; but it should also be verified on the basis of $n_{1 \text { min }}$.
When there is a belt drive between motor and gear reducer, different input speeds n_{1} should be examined in order to select the most suitable unit from engineering and economy standpoints alike (our catalogue favours this method of selection as it shows a number of input speed values n_{1} relating to a determined output speed $n_{\mathrm{N} 2}$ in the same section). Input speed should not be higher than 1800 rpm , unless conditions make it necessary; better to take advantage of the transmission, and use an input speed lower than 900 rpm.

n_{1} $r p m$	R 2I		$\mathbf{R ~ 3 I}$	
$\mathbf{2} \mathbf{8 0 0}$	1,4	0,71	1,7	0,85
$\mathbf{2} \mathbf{2 4 0}$	1,25	0,8	1,4	0,9
$\mathbf{1} \mathbf{8 0 0}$	1,12	0,9	1,18	0,95
$\mathbf{1 ~ 4 0 0}$	1	1	1	1

$\mathbf{n}_{\mathrm{N} 2} \mid n_{\mathrm{rpm}} n_{1}$		i_{N}	Gear reducer size $\text { er } \quad P_{n 2}$ $P_{\text {va }} \mathrm{hp}$ $M_{v a} \mathrm{lb}$ in ... $/ \mathrm{i}$															
		32	40	50	51	63	64	80	81	100	10	12	26	40	160	180		
280	1800		6,3	$\begin{aligned} & 1,32 \\ & 2922 \\ & 2116,33 \end{aligned}$	$\begin{aligned} & 2,29 \\ & 489 \\ & 2 / 6,08 \end{aligned}$	$\begin{aligned} & 4,51 \\ & 1030 \\ & 1 / 16.52 \end{aligned}$	$\begin{gathered} 5,8 \\ 1330 \\ 21 / 6,52 \end{gathered}$	$\begin{gathered} 9,8 \\ 2170 \\ 2 \mid / 6,36 \end{gathered}$	$\begin{aligned} & 11,6 \\ & 2590 \\ & 2 / 16,36 \end{aligned}$	$\begin{gathered} 20,4 \\ 4360 \\ 2 / 6,1 \end{gathered}$	$\begin{gathered} 24^{*} \\ 5100 \\ 21 / 6,1 \end{gathered}$	$\begin{gathered} 38,4^{*} \\ 8700 \\ 216,5 \end{gathered}$	$\begin{gathered} 45,8^{\star \star} \\ 104 \\ 2 \mid 60,5 \end{gathered}$	$\left\|\begin{array}{c} 79^{* *} \\ 17500 \\ 21 / 6,35 \end{array}\right\|$	$\begin{array}{\|c\|} \hline 91^{* *} \\ 20200 \\ 2 / 6,35 \end{array}$	-	$\begin{gathered} 184^{* *} \\ 40800 \\ 21 / 6,34 \end{gathered}$	-
224	1800	8	$\begin{gathered} 1,03 \\ 292 \\ 218,12 \end{gathered}$	$\begin{aligned} & 2,22 \\ & 590 \\ & 517,61 \end{aligned}$	$\begin{aligned} & 4,39 \\ & 1250 \\ & 21 / 8,13 \end{aligned}$	$\begin{gathered} 6,2 \\ 1750 \\ 21 / 8,13 \end{gathered}$	$\begin{gathered} 9,4 \\ 2640 \\ 2 / 1 / 8,05 \end{gathered}$	$\begin{aligned} & 11,8 \\ & 3320 \\ & 21 / 8,05 \end{aligned}$	$\begin{aligned} & 19,7 \\ & 5300 \\ & 217,64 \end{aligned}$	$\begin{aligned} & 24,7^{*} \\ & 6600 \\ & 2117,64 \end{aligned}$	$\begin{gathered} 37^{*} \\ 10500 \\ 218,11 \end{gathered}$	$\begin{gathered} 48,6 * * \\ 13880 \\ 21 / 8,11 \end{gathered}$	$\begin{gathered} 75^{* *} \\ 21000 \\ 21 / 8,03 \end{gathered}$	$\begin{array}{\|c\|} \hline 94^{* *} \\ 26600 \\ 21 / 8,03 \end{array}$	-	$\begin{array}{\|c\|} \hline 195^{* *} \\ 556600 \\ 21 / 8,12 \end{array}$	$\begin{gathered} 200^{* *} \\ 59100 \\ 21 / 8,43 \end{gathered}$	
180	1800 1120	10 6,3	$\begin{array}{r} \hline 0,77 \\ 292 \\ 21110,8 \\ 0,85 \\ 302 \\ 3116,33 \\ \hline \end{array}$	$\begin{array}{r} 1,73 \\ 590 \\ 2 / 9,76 \\ 1,46 \\ 500 \\ 51 / 6,08 \end{array}$	$\begin{aligned} & 3,43 \\ & 1,450 \\ & 21 / 10,4 \\ & 2,86 \\ & 1050 \\ & 2 \mid / 6,52 \end{aligned}$	$\begin{gathered} 4,89 \\ 1780 \\ 12 / 10,4 \\ 3,69 \\ 1350 \\ 21 / 6,52 \end{gathered}$	$\begin{gathered} 7,2 \\ 2640 \\ 21 / 10,5 \\ 6,2 \\ 2210 \\ 2 / 16,36 \end{gathered}$	$\begin{gathered} 9,7 \\ 3540 \\ 2 / 1 / 0,5 \\ 7,4 \\ 2650 \\ 2 / 6,36 \end{gathered}$	$\begin{array}{\|l\|} \hline 15,4 \\ 5300 \\ 219,79 \\ 12,9 \\ 4430 \\ 4 / 16,1 \end{array}$	$\begin{aligned} & \hline 20,6 \\ & 7100 \\ & 219,79 \\ & 15,2 \\ & 5200 \\ & 21 / 6,1 \end{aligned}$	$\begin{array}{\|c\|} \hline 28,9 \\ 10550 \\ 2 / 10,4 \\ 24,3 \\ 8900 \\ 21 / 6,5 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 39^{*} \\ 14200 \\ 2 / 100,4 \\ 29,2 \\ 10700 \\ 2 / 16,5 \\ \hline \end{array}$	58^{\star} 21000 21110,4 49,6 17700 216,35	$\begin{array}{\|c\|} \hline 77^{* *} \\ 28200 \\ 2 / 110,4 \\ 58^{\star} \\ 20 \\ 700 \\ 216,35 \\ \hline \end{array}$	$\left.\begin{array}{\|c} \\ 36^{* *} \\ 33 \\ 2 / 9,92 \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 143^{\star *} \\ 53800 \\ 21 / 10,7 \\ 117^{\star *} \\ 41600 \\ 216,34 \\ \hline \end{array}$	$\begin{gathered} 200^{* *} \\ 75600 \\ 21 / 10,8 \end{gathered}$	
140	1800 1120	12,5	$\begin{aligned} & \hline 0,58 \\ & 2766 \\ & 21 / 13,5 \\ & 0,66 \\ & 3022 \\ & 21 / 8,12 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 1,3 \\ 590 \\ 2 \mid 113 \\ 1,42 \\ 610 \\ 617,61 \end{array}$	$\begin{aligned} & 2,86 \\ & 1250 \\ & 1 / 12,5 \\ & 2,83 \\ & 1290 \\ & 121 / 8,13 \end{aligned}$	$\begin{aligned} & \hline 3,97 \\ & 1730 \\ & 2 / 12,5 \\ & 3,91 \\ & 1790 \\ & 1 / 8,13 \\ & \hline 18 \end{aligned}$	$\begin{gathered} 5,9 \\ 2640 \\ 2 / 1 / 12,7 \\ 6 \\ 2720 \\ 27 / 8,05 \end{gathered}$	$\begin{gathered} 7,7 \\ 3440 \\ 21 / 12,7 \\ 7,3 \\ 3320 \\ 21 / 8,05 \end{gathered}$	$\begin{gathered} 11,6 \\ 5300 \\ 21 / 13 \\ 12,7 \\ 5400 \\ 217,64 \\ \hline 10 \end{gathered}$	$\begin{gathered} 15,1 \\ 6900 \\ 2 \mid 113 \\ 15,4 \\ 600 \\ 217,64 \end{gathered}$	$\begin{gathered} 24,1 \\ 10500 \\ 21 / 12,5 \\ 23,7 \\ 10880 \\ 218,11 \end{gathered}$	$\begin{array}{\|c\|} \hline 31,4 \\ 137700 \\ 2 / 12,5 \\ 30,9 \\ 14100 \\ 2 / 8,11 \end{array}$	47,3 21000 $2 \mid 112,7$ 47,9 21600 $2 \mid / 8,03$	61^{*} 227300 $2 / 12,7$ 59^{*} 26600 218,03	$\begin{array}{\|c} \hline 85^{* *} \\ 38700 \\ 2 / 112,9 \end{array}$	$\begin{array}{\|c\|} \hline 129^{* *} \\ 54300 \\ 2 / 1 / 2,1 \\ 125^{* *} \\ 57300 \\ 21 / 8,12 \\ \hline \end{array}$	$\begin{gathered} \hline 142^{\star *} \\ 62100 \\ 21 / 12,5 \\ 127^{* *} \\ 60300 \\ 218,43 \\ \hline \end{gathered}$	
112	1800 1120 710	16 10 6,3	$\begin{aligned} & 0,5 \\ & 302 \\ & 21 / 10,8 \\ & 0,55 \\ & 310 \\ & 210,33 \end{aligned}$	0,98 51760 $51 / 16,2$ 1,11 610 $61 / 9,76$ 0,94 510 $21 / 6,08$	2,26 1290 $2 / 1 / 6,3$ 2,21 1,290 $2 / 1 / 10,4$ 1,85 1,870 $21 / 6,52$	2,94 1680 1616,3 2113 3,13 1830 $21 / 10,4$ 2,39 1380 216,52 216	$\begin{aligned} & 4,73 \\ & 2720 \\ & 2 / 16,4 \\ & 4,63 \\ & 2,620 \\ & 2 / 1 / 10,5 \\ & 3,92 \\ & 2,910 \\ & 21 / 6,36 \\ & \hline \end{aligned}$	5,8 3,830 $21 / 16,4$ 6,4 3,250 2610,5 4,7 2,660 $2 \mid / 6,36$	$\begin{array}{\|c} \hline 9,9 \\ 5400 \\ 21 / 15,7 \\ 9,9 \\ 5400 \\ 249,79 \\ 8,2 \\ 4430 \\ 21 / 6,1 \\ \hline \end{array}$	$\begin{gathered} 12,3 \\ 6700 \\ 2 / 15,7 \\ 13,2 \\ 7300 \\ 230,79 \\ 9,8 \\ 5,8 \\ 500 \\ 21 / 16,1 \\ \hline \end{gathered}$	18,9 10800 $21 / 16,3$ 18,5 10800 $21 / 10,4$ 15,7 9100 $21 / 6,5$	25,5 14600 $2 / 16,3$ 25 14600 $2 / 1 / 10,4$ 18,9 10,900 $21 / 6,5$	39,9 21,900 $21 / 15,2$ 36,9 21,900 $21 / 10,4$ 31,4 17,400 $21 / 6,35$ 108	52 27600 $21 / 15,2$ 49,4 29,400 $21 / 10,4$ 37,1 20,1 $21 / 6,35$	$\begin{array}{\|c\|} \hline 72^{* *} \\ 39100 \\ 2 / 1 / 55,5 \\ 61^{*} \\ 34200 \\ 2 / 9,92 \\ \hline \end{array}$	99^{*} 55200 $21 / 15,9$ 92^{*} 55500 $21 / 10,7$ 75^{\star} 42400 $21 / 6,34$	$\begin{gathered} 135^{* *} \\ 7560 \\ 2 / 1 / 16 \\ 127^{* *} \\ 77100 \\ 2 / 10,8 \\ \hline \end{gathered}$	
90	1800 1120 710	20 12,5	$\begin{aligned} & 0,37 \\ & 283 \\ & 21113,5 \\ & 0,43 \\ & 310 \\ & 218,12 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0,89 \\ & 620 \\ & 21 / 19,9 \\ & 0,83 \\ & 610 \\ & 21 / 13 \\ & 0,93 \\ & 640 \\ & 61 / 7,61 \end{aligned}$	$\begin{gathered} 1,88 \\ 1290 \\ 21 / 19,6 \\ 1,84 \\ 1290 \\ 21 / 12,5 \\ 1,85 \\ 1330 \\ 2 / 8,13 \end{gathered}$	$\begin{gathered} 2,59 \\ 1780 \\ 2 / 19,6 \\ 2,54 \\ 1780 \\ 2 / 12,5 \\ 2,53 \\ 1830 \\ 2 / 8,13 \end{gathered}$	$\begin{gathered} 3,88 \\ 2720 \\ 2 / 1 / 20 \\ 3,8 \\ 2720 \\ 21 / 12,7 \\ 3,92 \\ 2,800 \\ 21 / 8,05 \end{gathered}$	$\begin{gathered} 5,1 \\ 3550 \\ 2 \mid 120 \\ 4,96 \\ 3,550 \\ 21 / 12,7 \\ 4,65 \\ 3320 \\ 21 / 8,05 \end{gathered}$	$\begin{gathered} 7,5 \\ 5400 \\ 21 / 20,8 \\ 7,4 \\ 5400 \\ 541 / 13 \\ 8,3 \\ 5,60 \\ 217,64 \\ \hline \end{gathered}$	$\begin{gathered} 9,7 \\ 7100 \\ 21120,8 \\ 9,7 \\ 7100 \\ 2 \mid 113 \\ 9,8 \\ 6,800 \\ 2177,64 \\ \hline \end{gathered}$	$\begin{gathered} 15,7 \\ 10800 \\ 2 / 19,6 \\ 15,4 \\ 10,800 \\ 2 / 1 / 2,5 \\ 15,4 \\ 11100 \\ 2 \mid 8,11 \end{gathered}$	$\begin{array}{\|c\|} \hline 20,6 \\ 14100 \\ 2 / 19,6 \\ 20,2 \\ 14200 \\ 21 / 12,5 \\ 20 \\ 14400 \\ 218,11 \\ \hline \end{array}$	212,8 199800 $2 \mid 119$ 30,3 21600 $21 / 12,7$ 31,2 221,2 $21 / 8,03$ 200	36,4 24200 $2 / 1 / 9$ 39,3 28100 $21 / 12,7$ 37,3 26 600 218,03	$\begin{array}{\|c\|} \hline 52 \\ 34400 \\ 2 \mid 119 \\ 55 \\ 39800 \\ 2 \mid 112,9 \\ \hline \end{array}$	73 48600 $2 / 19$ 82 55400 $21 / 12,1$ 82 58900 $21 / 8,12$	101* 68900 2\|/19,5 90* 63300 $21 / 12,5$ 82* 61400 $21 / 8,43$	
71	1800 1800 1120 710	25 25 16 10	0,32 310 $21 / 10,8$	$\begin{gathered} 0,67 \\ 620 \\ 21 / 26,5 \\ 0,62 \\ 5170 \\ 21 / 16,2 \\ 0,72 \\ 630 \\ 619,76 \\ \hline \end{gathered}$	$\begin{aligned} & 1,42 \\ & 1,490 \\ & 21 / 24,1 \\ & 1,45 \\ & 1,330 \\ & 2 / 1 / 6,3 \\ & 1,45 \\ & 1330 \\ & 2 / 10,4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,86 \\ & 1,570 \\ & 2 / 24,1 \\ & 1,87 \\ & 1720 \\ & 12 / 16,3 \\ & 2,04 \\ & 1880 \\ & 21 / 10,4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2,89 \\ & 2530 \\ & 21125 \\ & 3,03 \\ & 2,000 \\ & 2 / 1 / 6,4 \\ & 3,02 \\ & 2800 \\ & 2 / 10,5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3,54 \\ & 3100 \\ & 2 \mid 125 \\ & 3,67 \\ & 3,600 \\ & 2 / 1 / 6,4 \\ & 4,05 \\ & 3760 \\ & 2 / 160 \\ & \hline \end{aligned}$	$\begin{gathered} 5,6 \\ 5,6 \\ 2100 \\ 2 / 26 \\ 6,4 \\ 5600 \\ 2 / 1 / 15,7 \\ 6,4 \\ 5600 \\ 5600 \\ 2 / 9,79 \\ \hline \end{gathered}$	$\begin{gathered} 6,8 \\ 6,8 \\ 2 \mid 126 \\ 7,8 \\ 6,800 \\ 29115,7 \\ 8,6 \\ 7500 \\ 219,79 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 10100 \\ 2 / 24,1 \\ 12,1 \\ 11100 \\ 2 / 1 / 6,3 \\ 12,1 \\ 11100 \\ 2 / 10,4 \end{gathered}$	$\begin{gathered} 14,6 \\ 12300 \\ 21 / 24,1 \\ 16,4 \\ 15000 \\ 2 / 16,3 \\ 16,4 \\ 15100 \\ 2 / 10,4 \end{gathered}$	24,6 22,600 $3 / 26,2$ 21,3 18100 $2 / 24,3$ 25,6 21900 $21 / 15,2$ 24 22 2200 $2 / 1 / 10,4$	32,9 30,300 $31 / 26,2$ - 33,2 28400 $2 / 1 / 5,2$ 32,2 29800 $2 / 1 / 10,4$	38,2 39200 3129,3 46,1 40200 2/145,5 39,6 34900 219,92	$\left\lvert\, \begin{gathered} 68 \\ 60 \\ 300 \\ 3 / 25,5 \\ - \\ \\ 64 \\ 566 \\ 200 \\ 2 / 15,9 \\ 60 \\ 57100 \\ 2 / 10,7 \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 76 \\ 78200 \\ 3 / 29,5 \\ - \\ - \\ 86 \\ 77100 \\ 2 / 160 \\ 82 \\ 7850 \\ 2 / 10,8 \end{array}$	
56	1800 1800 1120 710	$\begin{aligned} & 31,5 \\ & 31,5 \\ & 20 \\ & 12,5 \end{aligned}$	0,24 289 $2 / 1 / 13,5$	$\begin{gathered} 0,5 \\ 580 \\ 21 / 33,1 \\ 0,57 \\ 640 \\ 21 / 19,9 \\ 0,54 \\ 630 \\ 2 / 1 / 3 \end{gathered}$	$\begin{aligned} & 1,21 \\ & 1,250 \\ & 3 / 1 / 11,9 \\ & 1,08 \\ & 1,110 \\ & 21 / 29,3 \\ & 1,21 \\ & 1,230 \\ & 21 / 19,6 \\ & 1,2 \\ & 1,230 \\ & 2 / 12,5 \end{aligned}$	$\begin{gathered} 1,7 \\ 1900 \\ 3 / 31,9 \\ - \\ - \\ 1,66 \\ 1830 \\ 21 / 19,6 \\ 1,65 \\ 1830 \\ 21 / 12,5 \end{gathered}$	2,38 2,850 $3 / 34,2$ 2,04 2,280 $21 / 31,9$ 2,49 2800 $21 / 20$ 2,48 2,400 $2 / 1 / 2,7$	$\begin{gathered} 3,2 \\ 3820 \\ 3 / 1 / 34,2 \\ - \\ - \\ 3,25 \\ 3660 \\ 2 \mid 120 \\ 3,24 \\ 3660 \\ 21 / 12,7 \end{gathered}$	$\begin{array}{\|c\|} \hline 4,97 \\ 5,9700 \\ 3 / 32,8 \\ 4,1 \\ 4,560 \\ 21 / 31,8 \\ 4,78 \\ 5,700 \\ 2 / 1 / 20,8 \\ 4,85 \\ 5600 \\ 2 / 1 / 13 \end{array}$	6,7 7700 $31 / 32,8$ - 6,2 7300 $21 / 20,8$ 6,3 7300 $2 \mid 113$	$\begin{gathered} 10 \\ 111200 \\ 31 / 32 \\ 9,1 \\ 9400 \\ 21 / 29,3 \\ 10,1 \\ 11100 \\ 2 \mid 199 \\ 10 \\ 10 \\ 10 \\ 2 / 12,5 \end{gathered}$	$\begin{array}{\|c\|} \hline 13,6 \\ 152200 \\ 3 / 32 \\ \\ - \\ \\ 13,2 \\ 14660 \\ 2 / 19,6 \\ 13,2 \\ 14600 \\ 2 / 12,5 \\ \hline \end{array}$	18,9 22,600 $3 / 34,1$ - 19 20 200 $2 / 19$ 19,7 22300 $2 / 1 / 12,7$	$\begin{array}{\|c\|} \hline 25,4 \\ 30300 \\ 31 / 34,1 \\ \\ - \\ \\ 23,3 \\ 24900 \\ 2 / 119 \\ 25,7 \\ 28900 \\ 2 / 112,7 \\ \hline \end{array}$	37,6 42700 3/32,4 - $\begin{gathered} 33 \\ 35300 \\ 2 \mid 119 \\ 35,6 \\ 40900 \\ 20 \\ 2 \mid 112,9 \end{gathered}$	$\begin{gathered} 53 \\ 60 \\ 300 \\ 3 / 32,7 \\ \\ - \\ 46,8 \\ 49 \\ 900 \\ 2 \mid 19 \\ 53 \\ 56 \\ 200 \\ 2 / 12,1 \end{gathered}$	$\begin{gathered} 72 \\ 85400 \\ 31 / 33,9 \\ \\ - \\ \\ 64 \\ 70700 \\ 21 / 19,5 \\ 58 \\ 64500 \\ 21 / 12,5 \\ \hline \end{gathered}$	
45	1800 1120	40 25	-	$\begin{gathered} 0,37 \\ 520 \\ 51 / 40,4 \end{gathered}$	$\begin{aligned} & 1,01 \\ & 1350 \\ & 1 / 358,4 \end{aligned}$	$\begin{aligned} & 1,38 \\ & 1,850 \\ & 3 / 38,4 \end{aligned}$	$\begin{aligned} & 1,96 \\ & 2850 \\ & 31 / 41,6 \end{aligned}$	$\begin{aligned} & 2,55 \\ & 3720 \\ & 37 / 41,6 \end{aligned}$	$\begin{aligned} & 3,74 \\ & 5700 \\ & 31 / 43,6 \end{aligned}$	$\begin{gathered} 4,88 \\ 7400 \\ 3 / 43,6 \end{gathered}$	$\begin{gathered} 8,3 \\ 11200 \\ 3 / 38,4 \end{gathered}$	$\begin{gathered} 11 \\ 14800 \\ 3 / 38,4 \end{gathered}$	15,6 22600 $3 / 141,5$ 15,7 23 200 $3 / 26,2$	$\begin{gathered} 20,2 \\ 29400 \\ 31 / 41,5 \\ 21,1 \\ 31100 \\ 31 / 26,2 \end{gathered}$	$\begin{array}{\|c\|} \hline 28 \\ 41500 \\ 31 / 42,3 \\ 24,5 \\ 40400 \\ 4029,3 \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} 38,9 \\ 58800 \\ 3 / 43,1 \\ 43,4 \\ 620 \\ 200 \\ 3 / 25,5 \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 55 \\ 83100 \\ 3 / 43,3 \\ 48,4 \\ 805000 \\ 3 / 29,5 \\ \hline \end{array}$	

[^1]** Consult us for thermal power verification.

6 - Nominal powers and torques (gear reducers)

		i_{N}	Gear reducer size														
rpm			32	40	50	51	63	64	80	81	100	101	125	126	140	160	180
45	1120	25	-	$\begin{gathered} 0,43 \\ 640 \\ 21 / 26,5 \end{gathered}$	$\begin{gathered} 0,9 \\ 1220 \\ 21 / 24,1 \end{gathered}$	$\begin{aligned} & 1,19 \\ & 1610 \\ & 21 / 24,1 \end{aligned}$	$\begin{gathered} 1,84 \\ 2590 \\ 21 / 25 \end{gathered}$	$\begin{gathered} 2,25 \\ 3170 \\ 21 / 25 \end{gathered}$	$\begin{gathered} 3,55 \\ 5200 \\ 21 / 26 \end{gathered}$	$\begin{gathered} 4,34 \\ 6300 \\ 21 / 26 \end{gathered}$	$\begin{gathered} 7,6 \\ 10300 \\ 21 / 24,1 \end{gathered}$	$\begin{gathered} 9,3 \\ 12600 \\ 21 / 24,1 \end{gathered}$	$\begin{gathered} 13,5 \\ 18400 \\ 21 / 24,3 \end{gathered}$	-	-	-	-
	710	16	-	$\begin{gathered} 0,41 \\ 580 \\ 2 / 16,2 \end{gathered}$	$\begin{gathered} 0,95 \\ 1370 \\ 21 / 16,3 \end{gathered}$	$\begin{aligned} & 1,21 \\ & 1750 \\ & 21 / 16,3 \end{aligned}$	$\begin{aligned} & 1,98 \\ & 2880 \\ & 21 / 16,4 \end{aligned}$	$\begin{gathered} 2,37 \\ 3460 \\ 2 / 16,4 \end{gathered}$	$\begin{gathered} 4,15 \\ 5800 \\ 21 / 15,7 \end{gathered}$	$\begin{gathered} 5 \\ 7000 \\ 2 \mid 157 \end{gathered}$	$\begin{gathered} 7,9 \\ 11400 \\ 2 / 16.3 \end{gathered}$	$\begin{gathered} 10,7 \\ 15500 \\ 21 / 16,3 \end{gathered}$	$\left.\begin{gathered} 16,7 \\ 22500 \\ 21 / 15,2 \end{gathered} \right\rvert\,$	21,7 29200 21/15,2	$\begin{gathered} 29,7 \\ 40900 \\ 21 / 15,5 \end{gathered}$	$\begin{gathered} 41,4 \\ 58500 \\ 21 / 15,9 \end{gathered}$	$\begin{gathered} 55 \\ 78500 \\ 21 / 16 \end{gathered}$
35,5	1800	50	-	-	$\begin{gathered} 0,75 \\ 1400 \\ 31 / 53 \end{gathered}$	$\begin{gathered} 1,06 \\ 1960 \\ 31 / 53 \end{gathered}$	$\begin{aligned} & 1,65 \\ & 2920 \\ & 31 / 50,4 \end{aligned}$	$\begin{gathered} 2,22 \\ 3920 \\ 31 / 50,4 \end{gathered}$	$\begin{aligned} & 3,35 \\ & 5800 \\ & 31 / 49,8 \end{aligned}$	$\begin{gathered} 4,5 \\ 7900 \\ 31 / 49,8 \end{gathered}$	$\begin{gathered} 6,2 \\ 11500 \\ 31 / 53,1 \end{gathered}$	$\left.\begin{gathered} 8,5 \\ 15,700 \\ 31 / 53,1 \end{gathered} \right\rvert\,$	$\begin{gathered} 13,1 \\ 23100 \\ 31 / 50,2 \end{gathered}$	$\left\|\begin{array}{c} 17,6 \\ 30900 \\ 31 / 50,2 \end{array}\right\|$	$\begin{gathered} 23,6 \\ 42000 \\ 31 / 50,8 \end{gathered}$	$\begin{gathered} 35,6 \\ 62000 \\ 31 / 49,7 \end{gathered}$	$\begin{gathered} 45,5 \\ 84100 \\ 31 / 52,7 \end{gathered}$
	1120	31,5	-	-	0,78 1398 $31 / 31,9$	$\begin{aligned} & 1,09 \\ & 1960 \\ & 31 / 31,9 \end{aligned}$	$\begin{gathered} 1,53 \\ 2930 \\ 31 / 34,2 \end{gathered}$	$\begin{aligned} & 2,05 \\ & 3940 \\ & 3 / 34,2 \end{aligned}$	$\begin{gathered} 3,18 \\ 5900 \\ 31 / 32,8 \end{gathered}$	$\begin{gathered} 4,28 \\ 7900 \\ 31 / 32,8 \end{gathered}$	$\begin{gathered} 6,4 \\ 11500 \\ 31 / 32 \end{gathered}$	$\begin{gathered} 8,7 \\ 15700 \\ 31 / 32 \end{gathered}$	$\left\|\begin{array}{c} 12,1 \\ 23200 \\ 31 / 34,1 \end{array}\right\|$	$\left\|\begin{array}{c} 16,2 \\ 31100 \\ 31 / 34,1 \end{array}\right\|$	$\begin{gathered} 24 \\ 43800 \\ 31 / 32,4 \end{gathered}$	$\begin{gathered} 33,8 \\ 62 \text { 200 } \\ 31 / 32,7 \end{gathered}$	$\left.\begin{gathered} 46 \\ 87700 \\ 31 / 33,9 \end{gathered} \right\rvert\,$
	1120	31,5	-	$\begin{aligned} & 0,32 \\ & 590 \\ & 21 / 33,1 \end{aligned}$	$\begin{gathered} 0,68 \\ 1130 \\ 11 / 29,3 \end{gathered}$	-	$\begin{aligned} & 1,29 \\ & 2320 \\ & 21 / 31,9 \end{aligned}$	-	$\begin{gathered} 2,6 \\ 4650 \\ 21 / 31,8 \end{gathered}$	-	$\begin{gathered} 5,8 \\ 9600 \\ 21 / 29,3 \end{gathered}$	-	-	-	-	-	-
	710	20	-	$\begin{gathered} 0,37 \\ 660 \\ 2 / 19,9 \end{gathered}$	$\begin{gathered} 0,79 \\ 1370 \\ 21 / 19,6 \end{gathered}$	$\begin{aligned} & 1,08 \\ & 18880 \\ & 21 / 19,6 \end{aligned}$	$\begin{gathered} 1,62 \\ 2880 \\ 21 / 20 \end{gathered}$	$\begin{gathered} 2,12 \\ 3760 \\ 21 / 20 \end{gathered}$	$\begin{gathered} 3,12 \\ 5800 \\ 21 / 20,8 \end{gathered}$	$\begin{gathered} 4,07 \\ 7500 \\ 21 / 20,8 \end{gathered}$	$\begin{gathered} 6,5 \\ 11400 \\ 2 / 19,6 \end{gathered}$	$\begin{gathered} 8,6 \\ 15000 \\ 21 / 19,6 \end{gathered}$	$\begin{gathered} 12,3 \\ 20800 \\ 2 / 1 / 19 \end{gathered}$	$\left.\begin{gathered} 15,1 \\ 25500 \\ 21 / 19 \end{gathered} \right\rvert\,$	$\begin{gathered} 21,5 \\ 36200 \\ 21 / 19 \end{gathered}$	$\begin{gathered} 30,4 \\ 51100 \\ 21 / 19 \end{gathered}$	$\begin{gathered} 41,8 \\ 72,500 \\ 21 / 19,5 \end{gathered}$
28	1800	63	-	-	$\begin{gathered} 0,63 \\ 1400 \\ 31 / 63,6 \end{gathered}$	$\begin{gathered} 0,86 \\ 1910 \\ 31 / 63,6 \end{gathered}$	$\begin{gathered} 1,36 \\ 2920 \\ 31 / 61,3 \end{gathered}$	$\begin{gathered} 1,77 \\ 3810 \\ 31 / 61,3 \end{gathered}$	$\begin{array}{\|c} 2,52 \\ 5800 \\ 31 / 66,3 \end{array}$	$\begin{gathered} 3,29 \\ 7600 \\ 31 / 66,3 \end{gathered}$	$\begin{gathered} 5,2 \\ 11500 \\ 31 / 63,8 \end{gathered}$	$\left\|\begin{array}{c} 6,8 \\ 15300 \\ 31 / 63,8 \end{array}\right\|$	$\begin{gathered} 10,8 \\ 23100 \\ 31 / 61,2 \end{gathered}$	$\begin{gathered} 14 \\ 30100 \\ 31 / 61,2 \end{gathered}$	$\begin{gathered} 19,4 \\ 42500 \\ 31 / 62,3 \end{gathered}$	$\begin{gathered} 26,2 \\ 60200 \\ 3 / 65,6 \end{gathered}$	36,9 85200 31/65,9
	1120	40	-	0,23 530 $21 / 40,4$	$\begin{gathered} 0,65 \\ 1390 \\ 31 / 38,4 \end{gathered}$	$\begin{gathered} 0,88 \\ 1900 \\ 31 / 38,4 \end{gathered}$	$\begin{gathered} 1,25 \\ 2930 \\ 31 / 41,6 \end{gathered}$	$\begin{aligned} & 1,64 \\ & 3830 \\ & 3 / 1 / 41,6 \end{aligned}$	$\begin{gathered} 2,39 \\ 5900 \\ 31 / 43,6 \end{gathered}$	$\begin{gathered} 3,13 \\ 7700 \\ 31 / 43,6 \end{gathered}$	5,3 11500 $31 / 38,4$	7,1 15300 $31 / 38,4$	$\left\|\begin{array}{c} 9,9 \\ 23200 \\ 31 / 41,5 \end{array}\right\|$	12,9 30200 31/41,5	$\begin{gathered} 17,9 \\ 42700 \\ 31 / 42,3 \end{gathered}$	24,9 60400 31/43,1	35 85400 31/43,3
	710	25	-	-	-	-	-	-	-	-	-	-	$\begin{gathered} 10,1 \\ 23500 \\ 31 / 26,2 \end{gathered}$	$\begin{gathered} 13,5 \\ 31400 \\ 31 / 26,2 \end{gathered}$	$\begin{gathered} 16 \\ 41600 \\ 3 / 29,3 \end{gathered}$	$\begin{gathered} 27,8 \\ 62800 \\ 3 / 25,5 \end{gathered}$	$\left.\begin{gathered} 31,6 \\ 82800 \\ 31 / 29,5 \end{gathered} \right\rvert\,$
	710	25	-	$\begin{gathered} 0,28 \\ 660 \\ 21 / 26,5 \end{gathered}$	$\begin{gathered} 0,59 \\ 1250 \\ 21 / 24,1 \end{gathered}$	$\begin{gathered} 0,77 \\ 1640 \\ 21 / 24,1 \end{gathered}$	$\begin{gathered} 1,2 \\ 2660 \\ 2 / / 25 \end{gathered}$	$\begin{gathered} 1,46 \\ 3250 \\ 21 / 25 \end{gathered}$	$\begin{gathered} 2,3 \\ 5300 \\ 21 / 26 \end{gathered}$	$\begin{gathered} 2,81 \\ 6500 \\ 2 / 26 \end{gathered}$	4,94 10600 $21 / 24,1$	$\begin{gathered} 6,1 \\ 130000 \\ 21 / 24,1 \end{gathered}$	$\begin{array}{\|c\|} 8,7 \\ 18800 \\ 21 / 24,3 \end{array}$	-	-	-	-
22,4	1800	80	-	-	$\begin{aligned} & 0,46 \\ & 1270 \\ & 31 / 78,2 \end{aligned}$	$\begin{aligned} & 0,61 \\ & 1660 \\ & 31 / 78,2 \end{aligned}$	$\begin{gathered} 1 \\ 2680 \\ 31 / 76,7 \end{gathered}$	$\begin{gathered} 1,22 \\ 3280 \\ 3176,7 \end{gathered}$	$\begin{gathered} 1,86 \\ 5400 \\ 31 / 82,7 \end{gathered}$	$2,27$ 6600 31/82,7	$\begin{gathered} 3,9 \\ 10700 \\ 31 / 78,3 \end{gathered}$	$\left\|\begin{array}{c} 4,79 \\ 13100 \\ 31 / 78,3 \end{array}\right\|$	$\begin{gathered} 7,9 \\ 21,200 \\ 31 / 76,5 \end{gathered}$	$\begin{gathered} 9,8 \\ 26200 \\ 31 / 76,5 \end{gathered}$	13,9 37100 31/76,5	22,1 60900 31/78,5	31,1 86000 31/78,9
	1120	50	-	-	$\begin{gathered} 0,47 \\ 1420 \\ 31 / 53 \end{gathered}$	$\begin{gathered} 0,66 \\ 1980 \\ 31 / 53 \end{gathered}$	$\begin{gathered} 1,05 \\ 2970 \\ 31 / 50,4 \end{gathered}$	$\begin{gathered} 1,4 \\ 3980 \\ 31 / 50,4 \end{gathered}$	$\begin{gathered} 2,11 \\ 5900 \\ 31 / 49,8 \end{gathered}$	$2,84$ 8000 31/49,8	$\begin{gathered} 3,91 \\ 11700 \\ 31 / 53,1 \end{gathered}$	$\begin{gathered} 5,3 \\ 15,900 \\ 31 / 53,1 \end{gathered}$	$\begin{gathered} 8,3 \\ 23500 \\ 31 / 50,2 \end{gathered}$	11,1 31400 31/50,2	15,1 43100 31/50,8	$\begin{gathered} 22,5 \\ 62800 \\ 31 / 49,7 \end{gathered}$	$\begin{gathered} 29,1 \\ 86300 \end{gathered}$ $31 / 52,7$
	710	31,5	-	-	0,5 1420 $31 / 31,9$	0,7 1980 $31 / 31,9$	$\begin{gathered} 0,98 \\ 2970 \\ 31 / 34,2 \end{gathered}$	$\begin{aligned} & 1,31 \\ & 3980 \\ & 3 \mid / 34,2 \end{aligned}$	$\begin{gathered} 2,04 \\ 5900 \\ 31 / 32,8 \end{gathered}$	$\begin{gathered} 2,74 \\ 8000 \\ 31 / 32,8 \end{gathered}$	$\begin{gathered} 4,11 \\ 11700 \\ 31 / 32 \end{gathered}$	$\begin{gathered} 5,6 \\ 15900 \\ 31 / 32 \end{gathered}$	$\left\|\begin{array}{c} 7,8 \\ 23500 \\ 31 / 34,1 \end{array}\right\|$	$\left.\begin{gathered} 10,4 \\ 31400 \\ 3134,1 \end{gathered} \right\rvert\,$	$\begin{gathered} 15,4 \\ 44300 \\ 31 / 32,4 \end{gathered}$	21,7 62800 31/32,7	$\left\|\begin{array}{c} 29,4 \\ 88500 \\ 31 / 33,9 \end{array}\right\|$
	710	31,5	-	$\begin{gathered} 0,21 \\ 600 \\ 2 / 33,1 \end{gathered}$	$\begin{aligned} & 0,44 \\ & 1150 \\ & 21 / 29,3 \end{aligned}$	-	$\begin{gathered} 0,83 \\ 2,360 \\ 21 / 31,9 \end{gathered}$	-	$\begin{aligned} & 1,68 \\ & 4740 \\ & 21 / 31,8 \end{aligned}$	-	$\begin{aligned} & 3,74 \\ & 97700 \\ & 21 / 29,3 \end{aligned}$	-	-	-	-	-	-
18	1800	100	-	-	$\begin{gathered} 0,4 \\ 1420 \\ 31 / 102 \end{gathered}$	$\begin{gathered} 0,54 \\ 1930 \\ 31 / 102 \end{gathered}$	$\begin{gathered} 0,88 \\ 2970 \\ 31 / 96,4 \end{gathered}$	$\begin{aligned} & 1,15 \\ & 3870 \\ & 31 / 96,4 \end{aligned}$	$\begin{gathered} 1,63 \\ 5900 \\ 31 / 104 \end{gathered}$	$\begin{gathered} 2,12 \\ 7700 \\ 31 / 104 \end{gathered}$	$\begin{gathered} 3,27 \\ 11700 \\ 31 / 102 \end{gathered}$	$\left.\begin{gathered} 4,34 \\ 15 \\ 300 \\ 31 / 102 \end{gathered} \right\rvert\,$	$\begin{array}{\|c\|} \hline 7 \\ 23500 \\ 31 / 96,4 \end{array}$	$\left\|\begin{array}{c} 9 \\ 30500 \\ 31 / 96,4 \end{array}\right\|$	$12,5$ 43100 3198,2	$\begin{gathered} 17,4 \\ 61100 \\ 31 / 100 \end{gathered}$	$\begin{array}{\|c\|} \hline 23,3 \\ 82100 \\ 3 / 101 \end{array}$
	1120	63	-	-	$\begin{gathered} 0,4 \\ 1420 \\ 31 / 63,6 \end{gathered}$	$\begin{gathered} 0,54 \\ 1,930 \\ 31 / 63,6 \end{gathered}$	$\begin{gathered} 0,86 \\ 2970 \\ 31 / 61,3 \end{gathered}$	$\begin{gathered} 1,12 \\ 3870 \\ 31 / 61,3 \end{gathered}$	$\begin{aligned} & 1,59 \\ & 5900 \\ & 31 / 66,3 \end{aligned}$	$\begin{gathered} 2,08 \\ 7700 \\ 31 / 66,3 \end{gathered}$	$\begin{gathered} 3,26 \\ 11700 \\ 31 / 63,8 \end{gathered}$	$\begin{gathered} 4,32 \\ 15500 \\ 31 / 63,8 \end{gathered}$	$\left\|\begin{array}{c} 6,8 \\ 23500 \\ 31 / 61,2 \end{array}\right\|$	$\left\|\begin{array}{c} 8,9 \\ 30500 \\ 31 / 61,2 \end{array}\right\|$	$\begin{gathered} 12,3 \\ 43100 \\ 31 / 62,3 \end{gathered}$	$\begin{gathered} 16,5 \\ 61100 \\ 31 / 65,6 \end{gathered}$	$\begin{gathered} 23,3 \\ 86300 \end{gathered}$ 31/65,9
	710	40	-	$\begin{gathered} 0,15 \\ 540 \\ 21 / 40,4 \end{gathered}$	$\begin{aligned} & 0,42 \\ & 1420 \\ & 31 / 38,4 \end{aligned}$	$\begin{gathered} 0,57 \\ 1930 \\ 31 / 38,4 \end{gathered}$	$\begin{gathered} 0,8 \\ 2970 \\ 31 / 41,6 \end{gathered}$	$\begin{gathered} 1,05 \\ 3870 \\ 31 / 41,6 \end{gathered}$	$\begin{gathered} 1,53 \\ 5900 \\ 31 / 43,6 \end{gathered}$	$\begin{gathered} 2 \\ 7700 \\ 31 / 43,6 \end{gathered}$	$\begin{gathered} 3,43 \\ 11700 \\ 31 / 38,4 \end{gathered}$	$\left.\begin{gathered} 4,54 \\ 15500 \\ 31 / 38,4 \end{gathered} \right\rvert\,$	$\left.\begin{gathered} 6,4 \\ 235500 \\ 31 / 41,5 \end{gathered} \right\rvert\,$	$\left.\begin{gathered} 8,3 \\ 30500 \\ 31 / 41,5 \end{gathered} \right\rvert\,$	$\begin{gathered} 11,5 \\ 43100 \\ 31 / 42,3 \end{gathered}$	$\begin{gathered} 16 \\ 61100 \\ 31 / 43,1 \end{gathered}$	$22,4$ 86300 31/43,3
14	1800	125	-	-	$\begin{gathered} 0,29 \\ 1280 \\ 31 / 125 \end{gathered}$	$\begin{gathered} 0,38 \\ 1680 \\ 31 / 125 \end{gathered}$	$\begin{gathered} 0,64 \\ 2720 \\ 31 / 120 \end{gathered}$	$\begin{gathered} 0,79 \\ 3320 \\ 31 / 120 \end{gathered}$	$\begin{gathered} 1,27 \\ 5900 \\ 31 / 133 \end{gathered}$	$\begin{gathered} 1,66 \\ 7700 \\ 31 / 133 \end{gathered}$	$\begin{gathered} 2,68 \\ 11700 \\ 3 / 1125 \end{gathered}$	$\left.\begin{gathered} 3,55 \\ 15 \\ 1500 \\ 31 / 125 \end{gathered} \right\rvert\,$	$\begin{gathered} 5,7 \\ 23500 \\ 3 / 1 / 17 \end{gathered}$	$\left.\begin{gathered} 7,4 \\ 30500 \\ 3 / 1117 \end{gathered} \right\rvert\,$	$\begin{gathered} 10,3 \\ 42900 \\ 31 / 119 \end{gathered}$	$\begin{gathered} 12,7 \\ 53100 \\ 3 / 1 / 19 \end{gathered}$	$\begin{gathered} 17,5 \\ 75200 \\ 31 / 123 \end{gathered}$
	1120	80	-	-	$\begin{gathered} 0,29 \\ 1280 \\ 31 / 78,2 \end{gathered}$	$\begin{aligned} & 0,38 \\ & 1680 \\ & 31 / 78,2 \end{aligned}$	$\begin{aligned} & 0,63 \\ & 2720 \\ & 31 / 76,7 \end{aligned}$	$\begin{gathered} 0,77 \\ 3320 \\ 31 / 76,7 \end{gathered}$	1,17 5400 31/82,7	1,43 6600 31/82,7	$\begin{gathered} 2,45 \\ 10800 \\ 31 / 78,3 \end{gathered}$	$\begin{gathered} 3,01 \\ 13300 \\ 31 / 78,3 \end{gathered}$	$\left\|\begin{array}{c} 5 \\ 21500 \\ 31 / 76,5 \end{array}\right\|$	$\begin{gathered} 6,2 \\ 26600 \\ 31 / 76,5 \end{gathered}$	$\begin{gathered} 8,7 \\ 37600 \\ 31 / 76,5 \end{gathered}$	$\begin{gathered} 13,8 \\ 61100 \\ 31 / 78,5 \end{gathered}$	19,4 86300 31/78,9
	710	50	-	-	$\begin{gathered} 0,3 \\ 1420 \\ 31 / 53 \end{gathered}$	$\begin{gathered} 0,42 \\ 1980 \\ 31 / 53 \end{gathered}$	$\begin{gathered} 0,66 \\ 2970 \\ 31 / 50,4 \end{gathered}$	$\begin{gathered} 0,89 \\ 3980 \\ 31 / 50,4 \end{gathered}$	$\begin{gathered} 1,34 \\ 5900 \\ 31 / 49,8 \end{gathered}$	1,8 8000 31/49,8	$\begin{gathered} 2,48 \\ 11700 \\ 31 / 53,1 \end{gathered}$	$\left.\begin{gathered} 3,38 \\ 15900 \\ 31 / 53,1 \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} 5,3 \\ 23500 \\ 31 / 50,2 \end{array}\right\|$	$\left.\begin{gathered} 7 \\ 31400 \\ 31 / 50,2 \end{gathered} \right\rvert\,$	$\begin{gathered} 9,6 \\ 43100 \\ 3 / 1 / 50,8 \end{gathered}$	$\begin{gathered} 14,2 \\ 62800 \\ 31 / 49,7 \end{gathered}$	$\begin{gathered} 18,4 \\ 86300 \\ 31 / 52,7 \end{gathered}$
11,2	1800	160	-	-	$\begin{gathered} 0,22 \\ 1170 \\ 3 / 152 \end{gathered}$	-	$\begin{aligned} & 0,45 \\ & 2410 \\ & 31 / 154 \end{aligned}$	-	$\begin{gathered} 0,94 \\ 5400 \\ 31 / 166 \end{gathered}$	1,14 6600 31/166	$\begin{gathered} 2,01 \\ 108800 \\ 3 \mid 1153 \end{gathered}$	$\left.\begin{gathered} 2,48 \\ 13300 \\ 31 / 153 \end{gathered} \right\rvert\,$	$\begin{gathered} 4,19 \\ 21500 \\ 3 / 146 \end{gathered}$	$\begin{gathered} 5,2 \\ 26600 \\ 3 / 146 \end{gathered}$	$\begin{gathered} 7,3 \\ 37600 \\ 3 / 146 \end{gathered}$	-	-

For n_{1} higher than 1400 rpm or lower than 560 rpm , see ch. 5 and the table on page 16.

$\underset{\mathrm{rpm}}{\mathbf{n}_{\mathrm{N} 2}} \mid n_{1}$		i_{N}	Nominal output power $P_{\text {Mr }}$ hp Nominal output torque $M_{M c}$ lb in Train of gears / ratio ... $/ \mathrm{i}$															
		32	40	50	51	63	64	80	81	100	101	125	126	140	160	180		
11,2	1120		100	-	-	$\begin{aligned} & \hline 0,25 \\ & 1420 \\ & 3 / 1 / 102 \end{aligned}$	$\begin{aligned} & \hline 0,34 \\ & 1930 \\ & 3 / 102 \end{aligned}$	$\begin{aligned} & \hline 0,55 \\ & 2970 \\ & 31 / 96,4 \end{aligned}$	$\begin{aligned} & \hline 0,71 \\ & 3870 \\ & 3 / 1 / 96,4 \end{aligned}$	$\begin{array}{\|c\|c\|} \hline 1,01 \\ 5900 \\ 3 / 1 / 104 \end{array}$	$\begin{aligned} & 1,32 \\ & 7,700 \\ & 3 / 1 / 104 \end{aligned}$	$\begin{array}{\|c\|} \hline 2,04 \\ 11700 \\ 3 / 102 \end{array}$	$\begin{gathered} 2,7 \\ 15500 \\ 3 / 102 \end{gathered}$	$\begin{array}{\|c\|} \hline 4,32 \\ 23500 \\ 31 / 96,4 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5,6 \\ 30,500 \\ 3196,4 \end{array}$	$\begin{gathered} 7,8 \\ 43100 \\ 3 / 98,2 \end{gathered}$	$\begin{array}{\|c\|} \hline 10,8 \\ 611100 \\ 3 / 100 \end{array}$	$\begin{gathered} 14,8 \\ 83700 \\ 3 / 1 / 101 \end{gathered}$
	710	63	-	-	$\begin{aligned} & 0,25 \\ & 1420 \\ & 3163,6 \end{aligned}$	$\begin{gathered} 0,34 \\ 1930 \\ 3 / 1 / 63,6 \end{gathered}$	$\begin{aligned} & 0,54 \\ & 2970 \\ & 31 / 61,3 \end{aligned}$	$\begin{aligned} & 0,71 \\ & 3870 \\ & 3 / 161,3 \end{aligned}$	$\begin{gathered} 1,01 \\ 5900 \\ 3 / 66,3 \end{gathered}$	$\begin{aligned} & 1,32 \\ & 7,700 \\ & 3766,3 \end{aligned}$	$\left.\begin{gathered} 2,06 \\ 111700 \\ 31 / 63,8 \end{gathered} \right\rvert\,$	$\left\lvert\, \begin{gathered} 2,74 \\ 15500 \\ 31 / 63,8 \end{gathered}\right.$	$\begin{array}{\|c} 4,32 \\ 23500 \\ 31 / 61,2 \\ \hline \end{array}$	$\left\|\begin{array}{c} 5,6 \\ 30 \\ 31 / 61,2 \\ 300 \end{array}\right\|$	$\begin{gathered} 7,8 \\ 43,100 \\ 31 / 62,3 \end{gathered}$	$\left\lvert\, \begin{gathered} 10,5 \\ 61,00 \\ 31 / 65,6 \end{gathered}\right.$	$\begin{gathered} 14,7 \\ 86300 \\ 3 / 65,9 \end{gathered}$	
9	1800	200	-	-	-	-	-	-	$\begin{gathered} 0,68 \\ 4820 \\ 3 / 1203 \end{gathered}$	-	$\begin{gathered} 1,52 \\ 9900 \\ 3 \mid 1186 \end{gathered}$	-	$\begin{gathered} 2,95 \\ 19300 \\ 3 / 1 / 187 \end{gathered}$	-	-	-		
	1120	125	-	-	$\begin{gathered} 0,18 \\ 1280 \\ 3 / 1 / 125 \end{gathered}$	$\begin{gathered} 0,24 \\ 1680 \\ 3 \mid / 125 \end{gathered}$	$\begin{gathered} 0,4 \\ 2720 \\ 3 / 1 / 20 \end{gathered}$	$\begin{gathered} 0,49 \\ 3320 \\ 3 / 1120 \end{gathered}$	$\begin{gathered} 0,79 \\ 5900 \\ 3 / 1 / 133 \end{gathered}$	$\begin{aligned} & 1,03 \\ & 7,700 \\ & 3 / 1 / 133 \end{aligned}$	$\left.\begin{array}{\|c} 1,66 \\ 11,700 \\ 31 / 125 \end{array} \right\rvert\,$	$\left\lvert\, \begin{gathered} 2,21 \\ 15500 \\ 3 / 125 \end{gathered}\right.$	$\begin{array}{\|c} 3,56 \\ 23500 \\ 3 / 1117 \end{array}$	$\left\|\begin{array}{c} 4,63 \\ 30,500 \\ 3 / 117 \end{array}\right\|$	$\begin{gathered} 6,4 \\ 431100 \\ 3 / 119 \end{gathered}$	$\left\lvert\, \begin{gathered} 7,9 \\ 53100 \\ 3 / 119 \end{gathered}\right.$	$\begin{gathered} 10,9 \\ 75200 \\ 3 / 1 / 123 \end{gathered}$	
	710	80	-	-	$\begin{gathered} 0,18 \\ 1280 \\ 31 / 78,2 \end{gathered}$	$\begin{gathered} 0,24 \\ 1680 \\ 1 / 78,2 \end{gathered}$	$\begin{gathered} 0,4 \\ 2720 \\ 3 / 76,7 \end{gathered}$	$\begin{aligned} & 0,49 \\ & 3320 \\ & 31 / 76,7 \end{aligned}$	$\begin{gathered} 0,74 \\ 5400 \\ 3 / 182,7 \end{gathered}$	$\begin{gathered} 0,9 \\ 6.900 \\ 3 / 82,7 \end{gathered}$	$\left\|\begin{array}{c} 1,55 \\ 108800 \\ 31 / 78,3 \end{array}\right\|$	$\left\|\begin{array}{c} 1,91 \\ 13300 \\ 31 / 78,3 \end{array}\right\|$	$\begin{gathered} 3,17 \\ 21500 \\ 31 / 76,5 \end{gathered}$	$\left\|\begin{array}{c} 3,91 \\ 26600 \\ 31 / 76,5 \end{array}\right\|$	$\begin{gathered} 5,5 \\ 37 \\ 31 / 76,5 \end{gathered}$	$\begin{gathered} 8,8 \\ 61100 \\ 3 / 78,5 \end{gathered}$	$\begin{gathered} 12,3 \\ 86300 \\ 31 / 78,9 \end{gathered}$	
7,1	1120	160	-	-	$\begin{gathered} 0,14 \\ 1170 \\ 3 / 152 \end{gathered}$	-	$\begin{gathered} 0,28 \\ 2410 \\ 3 / 154 \end{gathered}$	-	$\begin{array}{\|c} 0,58 \\ 5400 \\ 3 / 1 / 66 \end{array}$	$\begin{gathered} 0,71 \\ 6600 \\ 3 / 166 \end{gathered}$	$\begin{array}{\|c\|} \hline 1,25 \\ 108800 \\ 3 / 153 \end{array}$	$\begin{array}{\|c\|} \hline 1,54 \\ 13300 \\ 3 / 153 \end{array}$	$\begin{gathered} 2,61 \\ 21500 \\ 3 / 1 / 46 \end{gathered}$	$\begin{array}{\|c\|} \hline 3,22 \\ 26600 \\ 3 / 146 \end{array}$	$\begin{array}{r} 4,56 \\ 37600 \\ 3 / 146 \end{array}$	-	-	
	710	100	-	-	$\begin{gathered} 0,16 \\ 1420 \\ 31 / 102 \end{gathered}$	$\begin{gathered} 0,21 \\ 1930 \\ 3 / 102 \end{gathered}$	$\begin{gathered} 0,35 \\ 2970 \\ 3 / 96,4 \end{gathered}$	$\begin{aligned} & 0,45 \\ & 3870 \\ & 3 / 196,4 \end{aligned}$	$\begin{gathered} 0,64 \\ 5900 \\ 3 / 1 / 104 \end{gathered}$	$\begin{gathered} 0,84 \\ 7,800 \\ 3 / 1 / 104 \end{gathered}$	$\begin{gathered} 1,29 \\ 111700 \\ 3 / 102 \end{gathered}$	$\left\lvert\, \begin{gathered} 1,71 \\ 15500 \\ 3 / 102 \end{gathered}\right.$	$\begin{array}{\|c} 2,74 \\ 23500 \\ 3 / 96,4 \end{array}$	$\left\|\begin{array}{c} 3,57 \\ 30500 \\ 3196,4 \end{array}\right\|$	$\begin{gathered} 4,94 \\ 43100 \\ 3198,2 \end{gathered}$	$\left\lvert\, \begin{gathered} 6,9 \\ 61100 \\ 3 / 100 \end{gathered}\right.$	$\begin{gathered} 9,5 \\ 85200 \\ 3 / 1 / 101 \end{gathered}$	
5,6	1120	200	-	-	-	-	-	-	$\begin{gathered} 0,42 \\ 4820 \\ 3 / 203 \end{gathered}$	-	$\begin{gathered} 0,95 \\ 9900 \\ 3 / 186 \end{gathered}$	-	$\begin{gathered} 1,83 \\ 19300 \\ 3 / 1 / 187 \end{gathered}$	-	-	-	-	
	710	125	-	-	$\begin{gathered} 0,12 \\ 1280 \\ 3 \mid / 125 \end{gathered}$	$\begin{gathered} 0,15 \\ 1680 \\ 1 / 1 / 125 \end{gathered}$	$\begin{aligned} & 0,25 \\ & 2720 \\ & 3 / 1120 \end{aligned}$	$\begin{aligned} & 0,31 \\ & 3320 \\ & 3 / 1120 \end{aligned}$	$\begin{gathered} 0,5 \\ 5900 \\ 3 / 133 \end{gathered}$	$\begin{gathered} 0,66 \\ 7700 \\ 7 / 133 \end{gathered}$	$\begin{gathered} 1,06 \\ 111700 \\ 3 / 125 \end{gathered}$	$\left\lvert\, \begin{gathered} 1,4 \\ 15500 \\ 3 / 1 / 125 \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 2,26 \\ 23500 \\ 3 / 1117 \end{gathered}\right.$	$\left\|\begin{array}{c} 2,94 \\ 305500 \\ 3 / 117 \end{array}\right\|$	$\begin{array}{r} 4,07 \\ 43100 \\ 3 / 119 \end{array}$	$\left(\begin{array}{c} 5 \\ 53100 \\ 3 / 1119 \end{array}\right.$	$\begin{gathered} 6,9 \\ 75200 \\ 3 / 1 / 123 \end{gathered}$	

For n_{1} higher than 1400 rpm or lower than 560 rpm , see ch .5 and the table on page 16

Summary of transmission ratios i, torques $M_{\mathrm{N} 2}\left[10^{3} \mathrm{lb} \mathrm{in}\right]$ valid for input speed $n_{1} \leqslant \mathbf{9 0} \mathrm{rpm}$

7 - Designs, dimensions, mounting positions and lubricant quantities

R 21 32, 40

Standard design

Mounting position B3, B6, B7, B8, V5, V6

PC1A

Standard design

FC1A
Mounting position B5, V1, V3

Size	A	B	C	c	$\begin{array}{\|l\|} \hline \mathrm{D} \\ \hline \end{array}$	E	$\underset{\varnothing}{\mathbf{d}}$	e	\mathbf{Y}_{1}	\bar{F}	$\underset{\text { h11 }}{\mathbf{H}}$	$\overline{\mathrm{K}}$	L	$\begin{array}{\|c} \hline \mathbf{M} \\ \varnothing \end{array}$	$\begin{aligned} & \hline \mathbf{N} \\ & \varnothing \\ & \mathrm{h} 6 \end{aligned}$	$\begin{aligned} & \hline \mathbf{P} \\ & \varnothing \end{aligned}$	Q	S	T	U	V	z	Mass \|b
32 40	$\begin{aligned} & 4,53 \\ & { }_{5,2} \end{aligned}$	$\begin{aligned} & 2,09 \\ & 2,48 \end{aligned}$	$\begin{aligned} & 0,79 \\ & 0,75 \end{aligned}$	$\begin{gathered} 4,06-3,66^{11} \\ 4,8 \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 0,63 \\ 0,748 \end{array}$	$\begin{array}{l\|} \hline 1,18 \\ 1,57 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0,433 \\ 0,433 \\ \hline \end{array}$	$\begin{aligned} & 0,79 \\ & 0,90 \end{aligned}$	$\begin{array}{\|l\|} \hline 6,02 \\ 7,28 \\ \hline \end{array}$	$\begin{aligned} & 0,37 \\ & 0,37 \end{aligned}$	$\begin{aligned} & 2,95 \\ & 3,54 \end{aligned}$	$\begin{aligned} & 0,37 \\ & 0,37 \end{aligned}$	$\begin{gathered} 0,39 \\ 0,47 \end{gathered}$	$\begin{array}{\|l\|} \hline 4,53 \\ 5,12 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3,74 \\ 4,331 \\ \hline \end{array}$	$\begin{aligned} & 5,51 \\ & 6,3 \end{aligned}$	$\begin{array}{\|l\|} \hline 0,12 \\ 0,14 \\ \hline \end{array}$	$\begin{aligned} & 0,39 \\ & 0,39 \end{aligned}$	$\begin{array}{\|l\|} \hline 5,47 \\ 6,14 \\ \hline \end{array}$	$\begin{aligned} & 3,03 \\ & 3,62 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,89^{2)} \\ & 2,2 \end{aligned}$	$\begin{array}{\|l\|} \hline 2,87 \\ 3,43 \end{array}$	$\begin{array}{r} 8,8 \\ 15,4 \\ \hline \end{array}$

1) Dimensions of shaft end shoulder and flange surface respectively.
) Square input flange $\square 4,13$ in: consult us if need be

Mounting positions and grease quantities [gal]

7 - Designs, dimensions, mounting positions and lubricant quantities

UC2A

Standard design
Mounting position B3, B6, B7, B8, V5, V6

Size	A	B B_{1}	C	c	$\begin{aligned} & \mathbf{D} \\ & \varnothing \end{aligned}$	E	$\begin{aligned} & \mathbf{d} \\ & \varnothing \end{aligned}$ e $I_{N} \leq 1$	$\begin{array}{r} Y_{1} \\ Y_{1} \\ \left.\right\|_{12,5} \end{array}$	$\begin{aligned} & \left\|\begin{array}{l} \mathbf{d} \\ \varnothing \end{array}\right\| \\ & \mathbf{2 \|} \mid \\ & \left\lvert\, \begin{array}{c} \mathbf{e} \\ I_{N} \geq \end{array}\right. \end{aligned}$	\mathbf{Y}_{1}	d \varnothing e \qquad	\mathbf{Y}_{1}		$\begin{aligned} & \mid Y_{1} \\ & =100 \end{aligned}$	G	H h11 \mathbf{H}_{0} h11	$\begin{aligned} & \mathbf{K} \\ & \varnothing \end{aligned}$	L \mathbf{L}_{1}	M \varnothing F \varnothing	$\begin{gathered} \hline \mathbf{N} \\ \varnothing \\ \text { h6 } \\ \mathbf{P}_{1} \\ \varnothing \end{gathered}$	P \varnothing $\mathbf{Q}_{+2}{ }^{\circ}$	R S	T	U \mathbf{U}_{1}	W	Mass
$\begin{aligned} & 50 \\ & 51 \end{aligned}$	4,88	$\begin{aligned} & \hline 2,99 \\ & 2,05 \end{aligned}$	1,2	5,43	$\begin{array}{\|l\|} \hline 0,945 \\ 1,102 \end{array}$	$\begin{array}{\|l\|} \hline 1,97 \\ 1,65 \\ \hline \end{array}$	$\begin{aligned} & \hline 0,551 \\ & 1,181 \end{aligned}$	$\begin{array}{l\|} \hline 9,21 \\ 8,9 \end{array}$	$\begin{array}{\|l\|} \hline 0,551 \\ 1,181 \end{array}$	$\begin{aligned} & \hline 9,21 \\ & 8,9 \end{aligned}$	$\begin{array}{\|l\|} \hline 0,433 \\ 0,906 \end{array}$	$\begin{aligned} & \hline 8,94 \\ & 8,62 \end{aligned}$	$\begin{aligned} & \hline 0,433 \\ & 0,906 \end{aligned}$	$\begin{aligned} & \hline 8,94 \\ & 8,62 \end{aligned}$	0,63	$\begin{aligned} & 4,17 \\ & 2,8 \end{aligned}$	0,45	$\begin{array}{\|l\|} \hline 0,67 \\ 0,47 \end{array}$	$\begin{aligned} & \hline 5,12 \\ & 0,37 \end{aligned}$	$\begin{aligned} & 4,33 \\ & 5,51 \end{aligned}$	$\begin{aligned} & 6,3 \\ & 0,14 \end{aligned}$	$\begin{aligned} & 0,53 \\ & 0,39 \end{aligned}$	5,83	$\begin{aligned} & 4,33 \\ & 3,94 \end{aligned}$	6,97	26,5
$\begin{aligned} & 63 \\ & 64 \\ & \hline \end{aligned}$	6,02	$\begin{aligned} & 3,78 \\ & 2,6 \end{aligned}$	1,44	6,61	$\begin{aligned} & \hline 1,26 \\ & 1,496 \end{aligned}$	2,28	$\begin{aligned} & 0,748 \\ & 1,575 \end{aligned}$	11,22	$\begin{array}{\|l\|l\|} \hline 0,63 \\ 1,181 \end{array}$	10,83	$\begin{array}{\|l\|} \hline 0,551 \\ 1,181 \end{array}$	10,83	$\begin{aligned} & 0,551 \\ & 1,181 \end{aligned}$	10,83	0,75	$\begin{aligned} & 5,2 \\ & 3,35 \end{aligned}$	0,55	$\begin{array}{\|} \hline 0,79 \\ 0,55 \\ \hline \end{array}$	$\begin{aligned} & \hline 6,5 \\ & 0,45 \end{aligned}$	$\begin{aligned} & 5,12 \\ & 6,3 \end{aligned}$	$\begin{aligned} & 7,87 \\ & 0,14 \end{aligned}$	$\begin{aligned} & 0,63 \\ & 0,47 \end{aligned}$	7,17	$\begin{aligned} & 5,35 \\ & 4,88 \end{aligned}$	8,54	44,1
$\begin{aligned} & 80 \\ & 81 \end{aligned}$	7,56	$\begin{aligned} & 4,84 \\ & 3,43 \end{aligned}$	1,69	8,19	$\begin{aligned} & \hline 1,496 \\ & 1,89 \end{aligned}$	3,15	$\begin{aligned} & 0,945 \\ & 1,969 \end{aligned}$	14,17	$\left.\begin{array}{\|l\|} \hline 0,748 \\ 1,575 \end{array} \right\rvert\,$	13,78	$\begin{array}{\|l\|} \hline 0,748 \\ 1,575 \end{array}$	13,78	$\begin{aligned} & \hline 0,63 \\ & 1,181 \end{aligned}$	13,39	0,87	$\begin{aligned} & \hline 6,3 \\ & 4,17 \end{aligned}$	0,63	$\begin{array}{\|l\|} \hline 0,94 \\ 0,67 \end{array}$	$\begin{aligned} & \hline 8,46 \\ & 0,55 \end{aligned}$	$\begin{aligned} & \hline 7,09 \\ & 7,87 \end{aligned}$	$\begin{aligned} & 9,84 \\ & 0,16 \end{aligned}$	$\begin{aligned} & \hline 0,75 \\ & 0,55 \end{aligned}$	8,9	$\begin{aligned} & \hline 6,73 \\ & 6,18 \end{aligned}$	10,47	77
$\begin{aligned} & 100 \\ & 101 \end{aligned}$	9,45	$\begin{aligned} & \hline 6,3 \\ & 4,69 \end{aligned}$	2,03	9,96	$\begin{array}{\|l\|} \hline 1,89 \\ 2,165 \\ \hline \end{array}$	3,23	$\begin{array}{\|l\|} \hline 1,102 \\ \hline 2,362 \\ \hline \end{array}$	16,61	$\begin{array}{\|l\|} \hline 0,945 \\ 1,969 \end{array}$	16,22	$\begin{array}{\|l\|} \hline 0,945 \\ 1,969 \end{array}$	16,22	$\begin{aligned} & \hline 0,748 \\ & 1,575 \end{aligned}$	15,83	1,06	$\begin{aligned} & \hline 7,68 \\ & 5,2 \end{aligned}$	0,71	$\begin{array}{\|l\|} \hline 1,12 \\ 0,79 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 10,43 \\ 0,55 \\ \hline \end{array}$	$\begin{aligned} & 9,06 \\ & 9,84 \end{aligned}$	$\begin{array}{r} 11,81 \\ 0,16 \end{array}$	$\begin{aligned} & \hline 0,89 \\ & 0,63 \end{aligned}$	11,02	$\begin{aligned} & 8,43 \\ & 7,8 \end{aligned}$	12,87	137
$\begin{aligned} & 125 \\ & 126 \end{aligned}$	11,69	$\begin{aligned} & 7,87 \\ & 5,94 \end{aligned}$	2,32	12,24*	$\begin{aligned} & 2,362 \\ & 2,756 \end{aligned}$	4,13	$\begin{aligned} & 1,26 \\ & 3,15 \end{aligned}$	20,71	$\begin{aligned} & 1,26 \\ & 3,15 \end{aligned}$	20,71	$\begin{array}{\|l\|} \hline 1,102 \\ 2,362 \\ \hline \end{array}$	19,76	$\begin{aligned} & \hline 0,945 \\ & 1,969 \end{aligned}$	19,37	1,18	$\begin{aligned} & 9,29 \\ & 6,3 \end{aligned}$	0,87	$\begin{array}{\|l\|} \hline 1,38 \\ 0,98 \\ \hline \end{array}$	$\begin{array}{r} 11,81 \\ 0,71 \\ \hline \end{array}$	$\begin{array}{r} 9,84 \\ 11,81 \\ \hline \end{array}$	$\begin{gathered} 13,78 \\ 0,2 \end{gathered}$	$\begin{array}{\|l\|} \hline 1,04 \\ 0,75 \\ \hline \end{array}$	13,58	$\begin{gathered} 10,39 \\ 9,65 \end{gathered}$	15,59	243
140	11,69	$\begin{aligned} & 8,58 \\ & 6,65 \end{aligned}$	2,32	12,954	3,15	5,12	$\begin{aligned} & 1,26 \\ & 3,15 \end{aligned}$	22,4	$\begin{array}{\|l\|} \hline 1,26 \\ 3,15 \end{array}$	22,4	$\begin{array}{\|l\|} \hline 1,102 \\ 2,362 \end{array}$	21,46	$\begin{aligned} & \hline 0,945 \\ & 1,969 \end{aligned}$	21,06	1,18	$\begin{aligned} & \hline 9,84^{11} \\ & 6,3^{11} \end{aligned}$	0,87	$\begin{array}{\|l\|} \hline 1,38 \\ 0,98 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 11,81 \\ 0,71 \end{array}$	$\begin{array}{r} 9,84 \\ 11,81 \end{array}$	$\begin{gathered} 13,78 \\ 0,2 \end{gathered}$	$\begin{aligned} & \hline 1,04 \\ & 0,75 \end{aligned}$	13,58	$\begin{aligned} & \hline 11,1 \\ & 10,35 \end{aligned}$	16,14	271
160	14,69	$\begin{aligned} & \hline 9,84 \\ & 7,52 \\ & \hline \end{aligned}$	2,7	15,164	3,543	5,12	$\begin{aligned} & 1,654 \\ & 4,331 \end{aligned}$	25,94	$\begin{aligned} & 1,654 \\ & 4,331 \end{aligned}$	25,94	$\begin{aligned} & \hline 1,26 \\ & 3,15 \\ & \hline \end{aligned}$	24,53	$\begin{aligned} & 1,26 \\ & 3,15 \end{aligned}$	24,53	1,34	$\left.\begin{array}{\|c} \mid 1,61^{2} \\ 7,87^{2} \end{array} \right\rvert\,$	1,06	$\begin{array}{\|l\|} \hline 1,65 \\ 1,18 \end{array}$	$\begin{array}{\|r\|} 15,75 \\ 0,87 \end{array}$	$\begin{aligned} & 13,78 \\ & 15,75 \end{aligned}$	$\begin{gathered} 17,72 \\ 0,2 \end{gathered}$	$\begin{array}{\|l\|} \hline 1,24 \\ 0,87 \\ \hline \end{array}$	16,93	$\begin{aligned} & 12,83 \\ & 11,97 \end{aligned}$	19,49	430
180	14,69	$\begin{gathered} \hline 10,83 \\ 8,5 \\ \hline \end{gathered}$	2,7	16,14*	3,937	6,5	$\begin{aligned} & 1,654 \\ & 4,331 \end{aligned}$	28,31	$\begin{array}{\|l\|} \hline 1,654 \\ 4,331 \\ \hline \end{array}$	28,31	$\begin{array}{\|l} \hline 1,26 \\ 3,15 \\ \hline \end{array}$	26,89	$\begin{aligned} & 1,26 \\ & 3,15 \\ & \hline \end{aligned}$	26,89	1,34	$\begin{array}{\|c\|} \hline 12,4^{3} \\ 7,87^{3} \\ \hline \end{array}$	1,06	$\begin{array}{\|l\|} \hline 1,65 \\ 1,18 \\ \hline \end{array}$	$\begin{array}{r} 15,75 \\ 0,87 \\ \hline \end{array}$	$\begin{aligned} & 13,78 \\ & 15,75 \\ & \hline \end{aligned}$	$\begin{gathered} 17,72 \\ 0,2 \\ \hline \end{gathered}$	$\begin{aligned} & 1,24 \\ & 0,87 \\ & \hline \end{aligned}$	16,93	$\begin{aligned} & 13,82 \\ & 12,95 \\ & \hline \end{aligned}$	20,28	573

1) For high speed shaft \mathbf{H} dimension is $-0,59$ in, $\mathbf{H}_{0}+0,59$ in
2) For high speed shaft \mathbf{H} dimension is $-0,32$ in $, \mathbf{H}_{0}+0,32$ in
3) For $R 31 \mathbf{c}$ dimension is $-0,16$ in (sizes $125 \ldots 140$), 0,24 in (sizes 160 and 180).

Mounting positions and oil quantities [gal]

[^2]being standard, is omitted from the designation.

1) Powers valid for continuous duty $S 1$; increase possible for $S 2 \ldots S 10$ (ch. 2b) in which case M_{2} increases and fs decreases proportionately.
2) For complete designation when ordering, see ch. 3.

\mathbf{P}_{1}	$\begin{gathered} \mathbf{n}_{2} \\ \mathrm{rpm} \end{gathered}$	$\begin{gathered} M_{2} \\ \mathrm{lb} \text { in } \end{gathered}$	fs	Gear reducer - Motor			i
1)				2)			
0,25	22,9	639	1,06	MR 31 40-63 B	B	4	74,4
	22,9	639	1,32	MR 31 41-63 B	B	4	74,4
	21,3	687	2,12	MR 31 50-71 A	A	6	51,7
	21,3	687	2,8	MR 31 51-71 A	A	6	51,7
	23,8	613	2,36	MR 31 50-63 B	B	4	71,4
	23,8	613	3,15	MR 31 51-63 B	B	4	71,4
	25,8	566	1,18	MR 31 40-63 B	B	4	65,9
	25,8	566	1,5	MR 31 41-63 B	B	4	65,9
	26,2	558	2,5	MR 31 50-63 B	B	4	65
	28,6	511	2,8	MR 31 50-63 B	B	4	59,5
	26,2	558	3,55	MR 31 51-63 B	B	4	65
	30,4	481	1,4	MR 31 40-63 B	B	4	55,9
	30,4	481	1,7	MR 31 41-63 B	B	4	55,9
	33,1	441	1,5	MR 31 40-63 B	B	4	51,3
	33,1	441	1,8	MR 31 41-63 B	B	4	51,3
	33,1	442	3,15	MR 31 50-63 B	B	4	51,4
	38	384	1,7	MR 31 40-63 B	B	4	44,7
	38	384	2,12	MR 31 41-63 B	B	4	44,7
	39,5	370	3,75	MR 31 50-63 B	B	4	43
	42,9	340	1,9	MR 31 40-63 B	B	4	39,6
	42,9	340	2,36	MR 31 41-63 B	B	4	39,6
	43,4	337	4	MR 31 50-63 B	B	4	39,2
	47,6	307	1,06	MR 31 32-63 B	B	4	35,7
	50,5	289	2,24	MR 31 40-63 B	B	4	33,6
	50,5	289	2,8	MR 31 41-63 В	B	4	33,6
	47,5	308	4,5	MR 31 50-63 B	B	4	35,8
	53	275	1,12	MR 31 32-63 B	B	4	32,1
	55,2	265	2,5	MR 31 40-63 B	B	4	30,8
	55,2	265	3,15	MR 31 41-63 B	B	4	30,8
	60,6	241	1,32	MR 31 32-63 B	B	4	28,1
	68,3	214	1,5	MR 31 32-63 B	B	4	24,9
	64,8	225	2,65	MR 31 40-63 B	B	4	26,2
	64,8	225	3,15	MR 31 41-63 B	B	4	26,2
	67,9	220	2,36	MR 21 40-71 A	A	6	16,2
	80,5	181	1,7	MR 31 32-63 B	B	4	21,1
	76,9	194	2,65	MR 21 40-63 B	B	4	22,1
	89,7	163	1,9	MR 31 32-63 B	B	4	18,9
	82,7	180	3,15	MR 21 40-71 A	A	6	13,3
	93,9	159	3,55	MR 21 40-63 B	B	4	18,1
	103	141	2	MR 31 32-63 B		4	16,5
	105	142	4,25	MR 21 40-63 B	B	4	16,2
	126	118	2,36	MR 21 32-63 B		4	13,5
	117	127	4,75	MR 21 40-63 B	B	4	14,5
	133	112	5,3	MR 21 40-63 B	B	4	12,8
	157	95	3,15	MR 21 32-63 B	B	4	10,8
	178	84	3,55	MR 21 32-63 B	B	4	9,57
	209	71	4,25	MR 21 32-63 B	B	4	8,12
	233	64	4,75	MR 21 32-63 B	B	4	7,29
	268	56	5,3	MR 21 32-63 B		4	6,33
	336	44,4	5,6	MR 21 32-63 B	B	4	5,06
0,33	9,88	2052	1,32	MR 31 63-71 B		6	111
	9,88	2052	1,6	MR 31 64-71 B	B	6	111
	12,4	1642	1,8	MR 31 63-71 B		6	89
	12	1696	1,4	MR 31 63-71 A	A	4	142
	12,4	1642	2,36	MR 31 64-71 B		6	89
	14,2	1432	1,18	MR 31 51-71 B	B	6	77,7
	15,9	1279	1	MR 31 50-63 C		4	107
	15,9	1279	1,32	MR 31 51-63 C		4	107
	15,3	1328	2	MR 31 63-71 A		4	111
	14,8	1375	2,8	MR 31 64-71 B		6	74,5
	15,3	1328	2,5	MR 31 64-71 A		4	111

\mathbf{P}_{1} hp 1)	$\begin{gathered} \mathbf{n}_{2} \\ \mathrm{rpm} \end{gathered}$	$\begin{gathered} M_{2} \\ \mathrm{lb} \text { in } \end{gathered}$	fs	Gear reducer - Motor		i
0,33	17,4	1166	1,18	MR 31 50-71 B	6	63,2
	18	1127	1,06	MR 31 50-71 A	4	94,4
	17,4	1166	1,7	MR 31 51-71 B	6	63,2
	17,9	1131	2,65	MR 31 63-71 B	6	61,3
	19,5	1042	1,32	MR 31 50-63 C	4	87,3
	19,5	1042	1,9	MR 31 51-63 C	4	87,3
	19,1	1062	2,8	MR 31 63-71 A	4	89
	19,1	1062	3,55	MR 31 64-71 A	4	89
	21,9	927	1,4	MR 31 50-71 A	4	77,7
	21,3	954	2	MR 31 51-71 B	6	51,7
	21,9	927	1,8	MR 31 51-71 A	4	77,7
	22,8	890	3,35	MR 31 63-71 A	4	74,5
	23,8	852	1,7	MR 31 50-63 C	4	71,4
	23,8	852	2,24	MR 31 51-63 C	4	71,4
	23,8	854	3,35	MR 31 63-71 B	6	46,3
	25,8	786	1,06	MR 31 41-63 C	4	65,9
	26,2	776	1,8	MR 31 50-63 C	4	65
	28,6	709	2	MR 31 50-63 C	4	59,5
	26,9	755	1,9	MR 31 50-71 A	4	63,2
	26,2	776	2,5	MR 31 51-63 C	4	65
	28,6	709	2,8	MR 31 51-63 C	4	59,5
	26,9	755	2,5	MR 31 51-71 A	4	63,2
	27,7	732	4	MR 31 63-71 A	4	61,3
	30,4	667	1	MR 31 40-63 C	4	55,9
	31,5	643	1	MR 31 40-71 A	4	53,9
	30,4	667	1,25	MR 31 41-63 C	4	55,9
	31,5	643	1,25	MR 31 41-71 A	4	53,9
	29,8	682	2	MR 31 50-71 A	4	57,1
	29,8	682	2,65	MR 31 51-71 A	4	57,1
	30,7	661	4,5	MR 31 63-71 A	4	55,4
	33,1	612	1,06	MR 31 40-63 C	4	51,3
	35,6	570	1,18	MR 31 40-71 A	4	47,7
	33,1	612	1,32	MR 31 41-63 C	4	51,3
	35,6	570	1,5	MR 31 41-71 A	4	47,7
	33,1	613	2,36	MR 31 50-63 C	4	51,4
	32,9	617	2,24	MR 31 50-71 A	4	51,7
	36,1	562	2,5	MR 31 50-71 A	4	47,1
	33,1	613	3,15	MR 31 51-63 C	4	51,4
	32,9	617	3,15	MR 31 51-71 A	4	51,7
	36,1	562	3,55	MR 31 51-71 A	4	47,1
	38	534	1,18	MR 31 40-63 C	4	44,7
	38	534	1,5	MR 31 41-63 C	4	44,7
	39,5	513	2,65	MR 31 50-63 C	4	43
	39,5	514	2,8	MR 31 50-71 A	4	43,1
	39,5	514	3,75	MR 31 51-71 A	4	43,1
	42,9	473	1,4	MR 31 40-63 C	4	39,6
	42	484	1,32	MR 31 40-71 A	4	40,5
	42,9	473	1,7	MR 31 41-63 C	4	39,6
	42	484	1,7	MR 31 41-71 A	4	40,5
	43,4	467	3	MR 31 50-63 C	4	39,2
	50,5	401	1,6	MR 31 40-63 C	4	33,6
	45,8	443	1,5	MR 31 40-71 A	4	37,1
	50,5	401	2	MR 31 41-63 C	4	33,6
	45,8	443	1,8	MR 31 41-71 A	4	37,1
	47,5	427	3,15	MR 31 50-63 C	4	35,8
	45,7	444	3,15	MR 31 50-71 A	4	37,2
	49,4	419	2,65	MR 21 50-71 B	6	22,3
	55,2	368	1,8	MR 31 40-63 C	4	30,8
	52,5	387	1,6	MR 31 40-71 A	4	32,4
	55,2	368	2,24	MR 31 41-63 C	4	30,8
	52,5	387	2	MR 31 41-71 A	4	32,4
	54,9	369	3,75	MR 31 50-63 C	4	31
	54,5	372	3,55	MR 31 50-71 A	4	31,2
	60,6	335	0,95	MR 31 32-63 C	4	28,1
	59,2	343	1,9	MR 31 40-71 A	4	28,7
	59,2	343	2,36	MR 31 41-71 A	4	28,7
	59,9	339	4	MR 31 50-71 A	4	28,4

1) Powers valid for continuous duty $S 1$; increase possible for $S 2 \ldots S 10$ (ch. 2b) in which case M_{2} increases and fs decreases proportionately.
2) For complete designation when ordering, see ch. 3 .

8 - Manufacturing programme (gearmotors)

1) Powers valid for continuous duty $S 1$; increase possible for $S 2 \ldots S 10$ (ch. 2b) in which case M_{2} increases and fs decreases proportionately.
) For complete designation when ordering, see ch. 3 .

2) Powers valid for continuous duty $S 1$; increase possible for $S 2 \ldots S 10$ (ch. 2b) in which case M_{2} increases and fs decreases proportionately.
3) For complete designation when ordering, see ch. 3.

* Mounting position B5R (see table ch. 2b).

[^3]

[^4]

\mathbf{P}_{1} hp 1)	$\underset{\text { rom }}{\mathbf{n}_{2}}$	$\begin{gathered} M_{2} \\ \text { lb in in } \end{gathered}$	ts	Gear reducer - Motor 2)	i
1,5	103	868	3,15	MR 31 63-90 S 4	16,5
	100	911	1,4	MR 21 50-90 L * 6	11
	93,9	970	1,12	MR 21 50-90 L * 6	11,7
	100	911	1,9	MR 21 51-90 L * 6	11.
	100	907	3	MR 21 63-80 C 4	16,9
	105	854	1,6	MR 3150-80 C 4	16,3
	105	854	2,24	MR 3151-80 C 4	16,3
	110	825	1,6	MR 21 50-90 L * 6	9,96
	114	798	1,5	MR 21 50-90 L 6	9,64
	114	797	1,4	MR 21 50-80 C 4	14,9
	110	825	2,12	MR 21 51-90 L * 6	9,96
	114	798	1,9	MR 21 51-90L 6	9,64
	108	841	3,15	MR 21 63-90 L 6	10,2
	112	815	3,35	MR 21 63-80 C 4	15,2
	105	869	2,65	MR 2l 63-90 S 4	16,2
	127	718	1,7	MR 21 50-90 L 6	8,67
	127	718	2,36	MR 21 51-90 L 6	8,67
	120	760	3,35	MR 21 63-80 C 4	14,2
	140	650	2	MR 2\| 50-90 L 6	7,85
	139	656	1,8	MR 21 50-80 C 4	12,2
	140	650	2,65	MR 21 51-90 L 6	7,85
	139	656	2,36	MR 21 51-80 C 4	12,2
	134	682	4	MR 21 63-80 C 4	12,7
	134	680	3,55	MR 21 63-90 S 4	12,7
	154	592	2,12	MR $2150-90 \mathrm{~L}$	7,14
	155	590	2	MR 21 50-80 C 4	11
	145	628	1,7	MR 21 50-90 S 4	11,7
	154	592	3	MR 21 51-90 L 6	7,14
	155	590	2,8	MR 21 51-80 C 4	11
	148	617	4,25	MR 21 63-80 C 4	11,5
	150	606	4,25	MR 21 63-90 S 4	11,3
	161	566	0,95	MR 21 40-80 C** 4	10,6
	181	505	1,12	MR 21 40-80 C ** 4	9,41
	161	566	1,06	MR 21 41-80 C ** 4	10,6
	181	505	1,32	MR 21 41-80 C ** 4	9,41
	171	534	2,36	MR 21 50-80 C 4	9,96
	176	516	2,24	MR 21 50-90 S 4	9,64
	171	534	3,35	MR 21 51-80 C 4	9,96
	176	516	3	MR 21 51-90 S 4	9,64
	201	453	1,32	MR 21 40-80 C ** 4	8,46
	201	453	1,6	MR 21 41-80 C ** 4	8,46
	188	486	2,65	MR 21 50-80 C 4	9,07
	205	444	2,8	MR 21 50-80 C 4	8,29
	196	465	2,5	MR 21 50-90 S 4	8,67
	188	486	3,75	MR 21 51-80 C 4	9,07
	196	465	3,55	MR 21 51-90 S 4	8,67
	227	402	1,5	MR 21 40-80 C ** 4	7,5
	227	402	1,8	MR 21 41-80 C** 4	7,5
	217	421	3	MR 21 50-90 S 4	7,85
	217	421	4	MR 21 51-90 S 4	7,85
	237	384	3,35	MR 21 50-80 C	7,17
	238	383	3,15	MR 21 50-90 S	7,14
	267	341	1,7	MR 21 40-80 C ** 4	6,36
	267	341	2,12	MR 21 41-80 C** 4	6,36
	262	348	3,55	MR 21 50-80 C 4	6,49
	260	350	3,55	MR 21 50-90 S	6,53
	292	312	1,9	MR 21 40-80 C** 4	5,83
	292	312	2,36	MR 21 41-80 C** 4	5,83
	301	303	4	MR 21 50-90 S 4	5,65
	343	266	2,24	MR 21 40-80 C** 4	4,96
	343	266	2,65	MR 21 41-80 C** 4	4,96
	333	274	4,5	MR 2l 50-90 S 4	5,11
	429	212	2,24	MR 21 40-80 C ** 4	3,96
	415	219	4,75	MR 21 50-90 S	4,1
2	7,35	16551	1,18	MR 31 125-100 LA	150
	9,31	13073	1	MR 31 101-90 LC	118

1) Powers valid for continuous duty $S 1$; increase possible for $S 2 \ldots S 10$ (ch. 2b) in which case M_{2} increases and fs decreases proportionately.
2) For complete designation when ordering, see ch. 3.
** Mounting position B5A (see table ch. 2b)

\mathbf{P}_{1} 1)	$\begin{gathered} \mathbf{n}_{2} \\ \mathrm{rom} \end{gathered}$	$\begin{gathered} M_{2} \\ 1 \mathrm{bin} \end{gathered}$	$f s$	Gear reducer - Motor 2)	i
2	48,8	2494	1,6	MR 31 64-90 L	34,8
	48,9	2488	2,24	MR 31 80-90 L	34,8
	48,9	2488	3	MR 31 81-90 L	34,8
	53,7	2267	1,25	MR 31 63-90 L 4	31,7
	53,7	2267	1,7	MR 31 64-90 L 4	31,7
	55,2	2205	2,65	MR 31 80-90 L 4	30,8
	55,2	2205	3,55	MR 31 81-90 L 4	30,8
	59,9	2033	1,4	MR 31 63-90 LC	18,4
	58,4	2084	1,32	MR 31 63-90 L	29,1
	59,9	2033	1,9	MR 31 63-90 LC 6	18,4
	58,4	2084	1,7	MR 31 64-90 L 4	29,1
	59,5	2045	2,8	MR 31 80-100 LA 6	18,5
	61,5	2020	2,65	MR 21 80-90 LC	17,9
	68,1	1787	1	MR 31 51-90 L * 4	25
	65,1	1871	1,5	MR 31 63-90 L 4	26,1
	72	1691	1,7	MR 31 63-90 L 4	23,6
	65,1	1871	2	MR 31 64-90 L 4	26,1
	72	1691	2,24	MR 31 64-90 L 4	23,6
	65	1871	3	MR 31 80-90 L 4	26,1
	72,5	1680	3,35	MR 31 80-90 L 4	23,5
	70,1	1773	1,32	MR 21 63-90 L * 4	24,3
	69,3	1792	2,5	MR 21 80-90 L 4	24,5
	74,8	1627	1,18	MR 31 51-90 L *	22,7
	79,2	1537	1,8	MR 31 63-90 L 4	21,5
	79,2	1537	2,5	MR 31 64-90 L 4	21,5
	75,9	1637	3,35	MR 21 80-100 LA 6	14,5
	75,9	1637	3,35	MR 21 80-90 LC	14,5
	81,8	1488	1,25	MR 31 51-90 L * 4	20,8
	86,1	1442	1,6	MR 21 63-100 LA 6	12,8
	89,5	1389	1,8	MR 21 63-90 L * 4	19
	89,5	1389	2,24	MR 21 64-90 L * 4	19
	84,8	1466	3,55	MR 21 80-90 L 4	20,1
	94,6	1286	1,06	MR 31 50-90 L * 4	18
	94,6	1286	1,5	MR 31 51-90 L * 4	18
	92,5	1316	2,12	MR 31 63-90 L 4	18,4
	103	1183	2,36	MR 31 63-90 L 4	16,5
	92,5	1316	2,8	MR 31 63-90 L 4	18,4
	103	1183	3,15	MR 31 64-90L 4	16,5
	100	1237	2,12	MR 21 63-90 L * 4	16,9
	100	1237	2,65	MR 21 64-90 L * 4	16,9
	105	1164	1,12	MR 31 50-90 L * 4	16,3
	105	1164	1,6	MR 31 51-90 L * 4	16,3
	114	1088	1,06	MR 21 50-90 LC 6	9,64
	114	1087	1	MR 21 50-90 L * 4	14,9
	114	1088	1,4	MR 21 51-90 LC 6	9,64
	112	1111	2,5	MR 21 63-90 L * 4	15,2
	105	1185	1,9	MR 21 63-90 L 4	16,2
	110	1130	2,65	MR 21 64-100 LA 6	10
	112	1111	3,15	MR 21 64-90 L * 4	15,2
	127	979	1,25	MR 2150 - 90 LC	8,67
	127	979	1,7	MR 21 51-90 LC 6	8,67
	120	1036	2,5	MR 21 63-90 L * 4	14,2
	120	1036	3,15	MR 21 64-90 L * 4	14,2
	140	886	1,4	MR 2150 - 90 LC 6	7,85
	139	894	1,32	MR 21 50-90 L * 4	12,2
	140	886	2	MR 21 51-90 LC 6	7,85
	139	894	1,7	MR 21 51-90 L * 4	12,2
	134	928	2,65	MR 21 63-90 L 4	12,7
	134	928	3,35	MR 21 63-90 L 4	12,7
	155	804	1,5	MR 21 50-90 L * 4	11
	145	856	1,25	MR 21 50-90 L 4	11,7
	155	804	2	MR 21 51-90 L * 4	11
	150	826	3,15	MR 21 63-90 L 4	11,3
	150	826	4	MR 21 64-90 L 4	11,3
	181	688	1	MR 21 41-80 ${ }^{\text {** }} 4$	9,41
	171	728	1,7	MR 21 50-90 L * 4	9,96

1) Powers valid for continuous duty $S 1$; increase possible for $S 2 \ldots S 10$ (ch. 2 b) in which case M_{2} increases and fs decreases proportionately.
2) For complete designation when ordering see ch. 3.

* Mounting position B5R (see table ch. 2b)

$\begin{aligned} & \mathbf{P}_{1} \\ & \mathrm{np} \\ & \text { 1) } \end{aligned}$	$\underset{r p m}{\mathbf{n}_{2}}$	$\begin{gathered} M_{2} \\ \text { lb in } \end{gathered}$	fs	Gear reducer - Motor 2)	i
2	176	704	1.6	MR $2150-90 \mathrm{~L}$	9.64
	171	728	2,36	MR 2151 - 90 L *	9,96
	176	704	2,12	MR 21 51-90 L	9,64
	167	742	3,55	MR 21 63-90 L	10,2
	201	618	1,18	MR 2141 - 80 D **	8,46
	188	663	1,9	MR 21 50-90 ${ }^{\text {L }}$	9,07
	205	606	2,12	MR $2150-90 \mathrm{~L}$ *	8,29
	196	633	1,9	MR $2150-90 \mathrm{~L}$	8,67
	188	663	2,65	MR 21 51-90 L *	9,07
	205	606	3	MR 2151 - 90 L *	8,29
	196	633	2,5	MR 2151 - 90 L	8,67
	185	671	4	MR 21 63-90 L	9,18
	204	610	4,25	MR 21 63-90 L	8,34
	227	548	1,32	MR 21 41-80 D**	7,5
	217	573	2,12	MR 2150 - 90 L	7,85
	217	573	3	MR 2151 - 90 L	7,85
	238	522	2,36	MR $2150-90 \mathrm{~L}$	7,14
	238	522	3,35	MR 21 51-90 L	7,14
	267	465	1,6	MR 21 41-80 D**	6,36
	260	478	2,65	MR $2150-90 \mathrm{~L}$	6,53
	260	478	3,75	MR 2151 - 90 L	6,53
	292	426	1,7	MR 21 41-80 ${ }^{\text {** }}$	5,83
	301	413	3	MR 21 50-90 L	5,65
	343	363	2	MR 21 41-80 D**	4,96
	333	374	3,35	MR 21 50-90 L	5,11
	415	299	3,35	MR 2150 - 90 L	4,1
2,5	7,35	20413	0,95	MR 31 125-100 LB	150
	9,39	15986	1,32	MR 31 125-100 LB	117
	9,39	15986	1,7	MR 31 126-100 LB	117
	9,39	15986	2,36	MR 31 140-100 LB	117
	11,5	13063	1	MR 31 101-100 LB	95,7
	11,5	13035	3,35	MR 31 140-100 LB	95,5
	11,7	12789	1,8	MR 31 125-100 LB	93,7
	11,7	12789	2,36	MR 31 126-100 LB	93,7
	14,1	10636	1,12	MR 31 100-100 LB	77,9
	14,1	10636	1,5	MR 31 101-100 LB	77,9
	14,4	10433	1,06	MR 31 100-90 LB	118
	14,4	10433	1,25	MR 31 101-90 LB	118
	14,8	10148	2,36	MR 31 125-100 LB	74,4
	14,8	10148	3	MR 31 126-100 LB	74,4
	17,7	8494	1,4	MR 31 100-90 LB	96,2
	17,7	8494	1,8	MR 31101-90 LB	96,2
	18	8348	2,8	MR 31 125-100 LB	61,2
	20,7	7261	1,06	MR 31 81-100 LB	53,2
	19,3	7798	1,5	MR 31 100-100 LB	57,1
	19,3	7798	1,9	MR 31 101-100 LB	57,1
	19,9	7545	3,15	MR 31 125-100 LB	55,3
	21,8	6882	1,7	MR 31 100-90 LB	77,9
	21,8	6882	2,24	MR 31 101-90 LB	77,9
	21,9	6857	3,35	MR 31 125-100 LB	50,2
	25,2	5963	1	MR 31 80-90 LB	67,5
	25,2	5963	1,32	MR 31 81-90 LB	67,5
	25,5	5878	2	MR 31 100-100 LB	43,1
	25,5	5878	2,65	MR 31 101-100 LB	43,1
	26,4	5686	1,06	MR 31 80-100 LB	41,7
	26,4	5686	1,4	MR 31 81-100 LB	41,7
	26,7	5629	2,12	MR 31 100-90 LB	63,8
	26,7	5629	2,8	MR 31 101-90 LB	63,8
	28,9	5196	1,12	MR 31 80-90 LB	58,8
	32,1	4670	1,25	MR 3180 - 90 LB	52,9
	28,9	5196	1,4	MR 31 81-90 LB	58,8
	32,1	4670	1,6	MR 31 81-90 LB	52,9
	29,3	5125	2,24	MR 31 100-90 LB	58
	32	4687	2,5	MR 31100 - 90 LB	53,1

\mathbf{P}_{1} hp 1)	$\begin{gathered} \mathbf{n}_{2} \\ \mathrm{rpm} \end{gathered}$	$\begin{gathered} M_{2} \\ \text { Ib ib in } \end{gathered}$	fs	Gear reducer - Motor 2)	i
2,5	29,3	5125	3,15	MR 31 101-90 LB	58
	32	4687	3,35	MR 31 101-90 LB	53,1
	36,3 36,3	4138 4138	1,4 1,9		46,9 46,9
	35,3	4254	2,65	MR 31 100-100 LB	31,2
	40,2 40,2	3737 3737	1,5 2	MR 31 $80-100$ MR 31 $81-100$ LB	27,4 27,4
	37,1	4052	2,8	MR 31 100-90 LB	45,9
	44,1 42,7	3404 3512 3	1,12 1,7	MR 31 $64-90$ LB MR 31 40	38,5 398
	42,7	3512	2,24		39,8 39,8
	44,3	3392	3,35	MR 31 100-90 LB	38,4
	48,8	3076	0,95	MR 31 63-90 LB	34,8
	48,8	3076	1,25	MR 31 64-90 LB	34,8
	48,9	3069	1,9	MR 31 80-90 LB	34,8
	48,9	3069	2,36	MR 31 81-90 LB	34,8
	48,6	3088	3,75	MR 31100-90 LB	35
	53,7	2796	1,06	MR 31 63-90 LB	31,7
	53,7	2796	1,4	MR 31 64-90 LB	31,7
	55,2	2719	2,12	MR 31 80-90 LB	30,8
	55,2	2719	2,8	MR 31 81-90 LB	30,8
	53,1	2824	,	MR 31100-90 LB	32
	58,4	2570	1,06	MR 31 63-90 LB	29,1
	58,4	2570	1,32	MR 31 64-90 LB	29,1
	59,5	2522	2,24	MR 31 80-100 LB	18,5
	59,5	2522	3,15	MR 31 81-100 LB	18,5
	65,1	2308	1,18	MR 31 63-90 LB	26,1
	72	2086	1,32	MR 31 63-90 LB	23,6
	65,1	2308	1,6	MR 31 64-90 LB	26,1
	72	2086	1,8	MR 31 64-90 LB	23,6
	65	2308	2,5	MR 31 80-90 LB	26,1
	72,5	2071	2,8	MR 31 80-90 LB	23,5
	65	2308	3,35	MR 31 81-90 LB	26,1
	72,5	2071	3,75	MR 31 81-90 LB	23,5
	70,1	2187	1,06	MR 21 63-90 LB*	24,3
	67,7	2264	2,24	MR 21 80-100 LB	16,3
	69,3	2210	2,12	MR 21 80-90 LB	24,5
	79,2	1896	1,5	MR 31 63-90 LB	21,5
	79,2	1896	2	MR 31 64-90 LB	21,5
	75,9	2018	2,65	MR 21 80-100 LB	14,5
	75,9	2018	3,35	MR 21 81-100 LB	14,5
	83,4	1800	3,15	MR 31 80-90 LB 4	20,4
	89,5	1713	1,5	MR 21 63-90 LB* 4	19
	89,5	1713	1,8	MR 2164 - 90 LB* 4	19
	84,8	1808	2,8	MR 21 80-90 LB 4	20,1
	84,8	1808	3,35	MR 21 81-90 LB	20,1
	92,5	1623	1,7	MR 31 63-90 LB	18,4
	103	1459	1,9	MR 31 63-90 LB	16,5
	92,5	1623	2,36	MR 31 64-90 LB	18,4
	103	1459	2,65	MR 31 64-90 LB 4	16,5
	100	1526	1,7	MR 2163 - 90 LB* 4	16,9
	100	1526	2,24	MR 21 64-90 LB*	16,9
	95,1	1612	3,35	MR 2180 - 90 LB	17,9
	114	1342	1,18	MR 2151 -100 LB*	9,64
	112	1370	2	MR 21 63-90 LB* 4	15,2
	105	1461	1,5	MR 21 63-90 LB 4	16,2
	112	1370	2,65	MR 21 64-90 LB* 4	15,2
	106	1449	3,75	MR 21 80-90 LB 4	16,1
	127	1207	1,4	MR 21 50-100 LB** 6	8,67
	127	1207	1,4	MR 21 51-100 LB* 6	8,67
	120	1278	,	MR 21 63-90 LB* 4	14,2
	120	1278	2,65	MR 21 64-90LB* 4	14,2
	117	1306	,	MR 2180 - 90 LB 4	14,5
	140	1093	1,18	MR 21 50-100 LB**	7,85
	139	1103	1,06	MR 21 50-90 LB* 4	12,2
	140	1093	1,6	MR 2151 -100 LB* 6	7,85
	139	1103	1,4	MR 2151 - 90 LB*	12,2

[^5]| \mathbf{P}_{1}
 hp
 1) | $\begin{gathered} \mathbf{n}_{2} \\ \mathrm{rom} \end{gathered}$ | $\begin{gathered} M_{2} \\ \mathrm{lb} \text { in } \end{gathered}$ | ts | Gear reducer - Motor | i | \mathbf{P}_{1}
 1) | $\underset{\substack{\mathbf{n}_{2} \\ \text { rpm }}}{ }$ | $\begin{array}{r} M_{2} \\ { }_{1 \mathrm{~b}} \mathrm{in} \end{array}$ | fs | Gear reducer - Mo 2) 2) | | i |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2,5 | 134 | 1147 | 2,36 | MR 21 63-90 LB* | 12,7 | 3 | 25,6 | 6973 | 0,95 | MR 31 81-100 LA | 4 | 66,4 |
| | 134 | 1144 | 2,12 | MR 21 63-90 LB | 12,7 | | 25,2 | 7091 | 1,12 | MR 31 81-90 LC | 4 | 67,5 |
| | 134 | 1147 | 3 | MR 2164 - 90 LB* | 12,7 | | 25,5 | 6990 | 1,7 | MR 31 100-112 M | 6 | 43,1 |
| | 134 | 1144 | 2,65 | MR 21 64-90 LB | 12,7 | | 25,5 | 6990 | 2,24 | MR 31 101-112 M | 6 | 43,1 |
| | 131 | 1174 | 4,5 | MR 2180 - 90 LB | 13 | | 23,8 | 7495 | 3 | MR 31 125-112 M | 6 | 46,2 |
| | 155 | 992 | 1,25 | MR 2150 - 90 LB* | 11 | | 26,4 | 6762 | 1,12 | MR 31 81-112 M | 6 | 41,7 |
| | 145 | 1056 | 1 | MR 2150 - 90 LB | 11,7 | | 26,9 | 6641 | 1,8 | MR 31 100-100 LA | 4 | 63,2 |
| | 155 | 992 | 1,7 | MR 2151 - 90 LB* | 11 | | 26,7 | 6694 | 1,7 | MR 31 100-90 LC | 4 | 63,8 |
| | 150 | 1019 | 2,5 | MR 21 63-90 LB | 11,3 | | 26,9 | 6641 | 2,36 | MR 31 101-100 LA | 4 | 63,2 |
| | 150 | 1019 | 3,15 | MR 21 64-90 LB | 11,3 | | 26,7 | 6694 | 2,36 | MR 31101-90 LC | 4 | 63,8 |
| | 176 | 869 | 1,32 | MR 2150 - 90 LB | 9,64 | | 27,8 | 6423 | 3,55 | MR 31 125-100 LA | 4 | 61,2 |
| | 171 | 898 | 1,9 | MR 21 51-90 LB* | 9,96 | | 32 | 5587 | 1,06 | MR 31 80-100 LA | 4 | 53,2 |
| | 176 | 869 | 1,7 | MR 21 51-90 LB | 9,64 | | 32,1 | 5553 | 1,06 | MR 31 80-90 LC | 4 | 52,9 |
| | 167 | 915 | 2,8 | MR 21 63-90 LB | 10,2 | | 28,7 | 6217 | 1,18 | MR 31 81-100 LA | 4 | 59,2 |
| | 167 | 915 | 3,75 | MR 21 64-90LB | 10,2 | | 32 | 5587 | 1,4 | MR 31 81-100 LA | 4 | 53,2 |
| | 205 | 747 | 1,7 | MR 2150 - 90 LB* | 8,29 | | 28,9 | 6179 | 1,18 | MR 31 81-90 LC | 4 | 58,8 |
| | 196 | 781 | 1,5 | MR $2150-90 \mathrm{LB}$ | 8,67 | | 32,1 | 5553 | 1,4 | MR 31 81-90 LC | 4 | 52,9 |
| | 205 | 747 | 2,36 | MR 2151 - 90 LB* | 8,29 | | 29,8 | 6000 | 1,9 | MR 31 100-100 LA | 4 | 57,1 |
| | 196 | 781 | 2,12 | MR 2151 - 90 LB | 8,67 | | 29,3 | 6094 | 1,9 | MR 31 100-90 LC | 4 | 58 |
| | 185 | 827 | 3,15 | MR 21 63-90 LB | 9,18 | | 32 | 5574 | 2,12 | MR 31 100-90 LC | 4 | 53,1 |
| | 204 | 752 | 3,55 | MR 21 63-90 LB | 8,34 | | 29,8 | 6000 | 2,36 | MR 31 101-100 LA | 4 | 57,1 |
| | 217 | 707 | 1,7 | MR 2150 - 90 LB | 7,85 | | 29,3 | 6094 | 2,65 | MR 31 101-90 LC | 4 | 58 |
| | 217 | 707 | 2,36 | MR 2151 - 90 LB | 7,85 | | 32 | 5574 | 2,8 | MR 31 101-90 LC | 4 | 53,1 |
| | 238 | 644 | 1,9 | MR $2150-90$ LB | | | 30,7 | 5806 | | MR 31 125-100 LA | 4 | 55,3 |
| | 238 | 644 | 2,8 | MR 2\| $51-90 \mathrm{LB}$ | 7,14 | | 35,1 36,3 | 5085 4921 | 1,18 1,18 | | 6 4 | 31,3 46,9 |
| | 238 | 644 | 4 | MR 21 63-90 LB | 7,14 | | 36,3 35,1 | 5085 | 1,6 | MR $3_{1} 81-112 \mathrm{M}$ | 6 | 41,3 |
| | 260 | 589 | 2,12 | MR 2150 - 90 LB | 6,53 | | 36,3 | 4921 | 1,6 | MR 31 81-90 LC | 4 | 46,9 |
| | 260 | 589 | 3 | MR 21 51-90 LB | 6,53 | | 32,9 | 5432 | 2,12 | MR 31 100-100 LA | 4 | 51,7 |
| | 265 | 579 | 4,5 | MR 2153 - 90 LB | 6,42 | | 36,1 | 4945 | 2,36 | MR 31 100-100 LA | 4 | 47,1 |
| | 301 | 509 | 2,36 | MR $2150-90$ LB | 5,65 | | 32,9 | 5432 | 2,8 | MR 31 101-100 LA | 4 | 51,7 |
| | 301 | 509 | 3,15 | MR 21 51-90 LB | 5,65 | | 36,1 | 4945 | 3,15 | MR 31 101-100 LA | 4 | 47,1 |
| | 333 | 461 | 2,65 | MR 21 50-90 LB | 5,11 | | 40,2 | 4444 | 1,32 | MR 31 80-112 M | 6 | 27,4 |
| | 333 | 461 | 3,15 | MR 21 51-90 LB | 5,11 | | 36,7 | 4869 | 1,18 | MR 31 80-100 LA | 4 | 46,4 |
| | 415 | 369 | 2,8 | MR 21 50-90 LB | 4,1 | | 40,2 | 4444 | 1,7 | MR 31 81-112 M | 6 | 27,4 |
| 3 | 9,39 | 19011 | 1,12 | MR 31 125-112 M | 117 | | 39,5 | 4523 | 2,5 | MR 31 81-100 LA MR $3100-100$ LA | 4 | 46,4 |
| | | | | | | | 37,1 | 4818 | 2,36 | MR 31 100-90 LC | 4 | 45,9 |
| | 9,39 | 19011 | 1,4 | MR 31 126-112 M MR 31 140-112 M | $\begin{aligned} & 117 \\ & 117 \end{aligned}$ | | 39,5 | 4523 | 3,55 | MR 31 101-100 LA | 4 | 43,1 |
| | 9,39 | 19011 | 2 | | 117 | | 37,1 | 4818 | 3,35 | MR 31 101-90 LC | , | 45,9 |
| | 11,4 | 15708 | 1,25 | $\begin{array}{lll} \text { MR } & 31 & 125-100 \text { LA } \\ \text { MR } & 31 \\ 140-112 \text { M } & 6 \end{array}$ | $\begin{aligned} & 150 \\ & 955 \end{aligned}$ | | | | | | | |
| | 11,5 | 15501 | 2,8 | | $95,5$ | | 40,8 | 4375 4176 | 1,1,4 | MR 31 80-90 LC | 4 | 41, 39 |
| | 11,7 | 15209 | 1,5 | MR 31 125-112 M 6 | 93,7 | | 40,8 | 4375 | 1,7 | MR 31 81-100 LA | 4 | 41,7 |
| | 11,7 | 15209 | 2 | | 93,7 | | 42,7 | 4176 | 1,9 | MR 31 81-90 LC | | 39,8 |
| | 14,1 | 12648 | 1,25 | | 77,9 | | 44,3 | 4034 | 2,8 | MR 31 100-90 LC | 4 | 38,4 |
| | 14,4 | 12406 | 1,06 | MR 31 101-90 LC 4 | 118 | | 48,8 | 3658 | 1,06 | MR 31 64-90 LC | 4 | 34,8 |
| | 14,8 | 12068 | 1,9 | MR 31 125-112 M 6 | 74.4 | | 46 | 3877 | 1,5 | MR 31 80-100 LA | 4 | 36,9 |
| | 14,5 | 12301 | 1,7 | MR 31 125-100 LA 4 | 117 | | 48,9 | 3649 | 1,6 | MR 31 80-90 LC | | 34,8 |
| | 14,8 | 12068 | 2,5 | MR 31 126-112 M | 74,4 | | 46 | 3877 | 2 | MR 31 81-100 LA | 4 | 36,9 |
| | 14,5 | 12301 | 2,12 | MR 31 126-100 LA 4 | 117 | | 48,9 | 3649 | 2 | MR 31 81-90 LC | 4 | 34,8 |
| | 14,5 | 12301 | 3 | MR 31 140-100 LA 4 | 117 | | 45,7 | 3910 | 3 | MR 31 100-100 LA | 4 | 37,2 |
| | 17,4 | 10263 | 1,12 | $\begin{array}{lll} \text { MR } 31100-112 \text { M } & 6 \\ \text { MR } & 31 & 100-100 \text { LA } \end{array}$ | 63,2 | | 48,6 | 3672 | 3,15 | MR 31100-90 LC | - | |
| | 17,8 | 10051 | 1,06 | | 95,7 | | 47 | 3881 | 2,5 | MR 2l 100-112 M | - | 23,4 |
| | 17,7 | 10101 | 1,18 | MR 31100-90 LC 4 | 96,2 | | 53,7 | 3325 | 1,18 | MR 31 64-90 LC | 4 | 31,7 |
| | 17,4 | 10263 | 1,5 | MR 31 101-112 M | 63,2 | | 54,3 | 3290 | 1,8 | MR 31 80-100 LA | 4 | 31,3 |
| | 17,8 | 10051 | 1,32 | | 95,7 | | 55,2 | 3234 | 1,8 | MR 31 80-90 LC | 4 | 30,8 |
| | 17,7 | 10101 | 1,5 | | 96,2 | | 54,3 | 3290 | 2,36 | MR 31 81-100 LA | 4 | 31,3 |
| | 18,1 | 9841 | 2,36 | | 93,7 | | 55,2 | 3234 | 2,36 | MR 31 81-90 LC | 4 | 30,8 |
| | 18,1 | 9841 | 3,15 | MR $31125-100$ LA 4
 MR 31
 $126-100$ LA 4 | 93,7 | | 54,5 | 3273 | 3,35 | MR 31 100-100 LA | 4 | 31,2 |
| | 19,3 | 9273 | 1,25 | | 57,1 | | 53,1 55,4 | 3359 3291 | 3,35 1,4 3 | MR 31 100-90 LC MR $2180-112 \mathrm{M}$ | 6 | |
| | 19,3 | 9273 8973 | 1,6 | | 57,1 55,3 | | 55,4 57,1 | 3291 3193 | 1,4 3,15 | MR $2180-112 \mathrm{M}$ MR $21100-112 \mathrm{M}$ | 6 | 19,9 19,3 |
| | 19,9 19 | 8973 8973 | 2,65 3,55 | | 55,3 55,3 | | 57,1 58,4 | 3193 3056 | 3,15 1,12 | MR 31 64-90 LC | 6 | 19,3 29,1 |
| | 19,9 21,8 | 8973 8184 | 3,55 1,4 | MR 31 126-112 M
 MR 31 100-100 LA | 55,3 | | 58,4 | 3056 2875 | 1,12 2 | MR 31 64-90 LC MR 31 80-100 LA | 4 | 29,1 27,4 |
| | 21,8 21,8 | 8184 8184 | 1,4 1,4 | $\begin{array}{lll} \text { MR } 31100-100 \text { LA } & 4 \\ \text { MR } 31100-90 \text { LC } & 4 \end{array}$ | 77,9 77,9 | | 62,1 | 2875 | 2,5 | MR 31 81-100 LA | | 27,4 |
| | 21,8 | 8184 | 1,9 | MR 31 101-100 LA | 77,9 | | 59,9 | 2980 | 3,75 | MR 31 100-100 LA | 4 | 28,4 |
| | 21,8 | 8184 | 1,9 | MR 31 101-90 LCMR $31125-100$ LA | 77,9 | | 65,1 | 2744 | 1 | MR 31 63-90 LC | 4 | 26,1 |
| | 22,9 | 7809 | 3 | | 74,4 | | 72 | 2480 | 1,12 | MR 31 63-90 LC | 4 | 23,6 |

1) Powers valid for continuous duty S 1 ; increase possible for $\mathrm{S} 2 \ldots \mathrm{~S} 10$ (ch. 2b) in which case M_{2} increases and fs decreases proportionately.
2) For complete designation when ordering, see ch. 3.

* Mounting position B5R (see table ch. 2b).

\mathbf{P}_{1} 1)	$\begin{gathered} \mathbf{n}_{2} \\ \mathrm{rpm} \end{gathered}$	$\begin{gathered} M_{2} \\ \text { lb in } \end{gathered}$	fs	Gear reducer - Motor 2)	i
3	65,1	2744	1,32	MR 31 64-90 LC	26,1
	72	2480	1,5	MR 31 64-90 LC	23,6
	70,1	2548	2,24	MR 31 80-100 LA	24,3
	65	2744	2,12	MR 31 80-90 LC	26,1
	72,5	2463	2,36	MR 31 80-90 LC	23,5
	70,1	2548	3	MR 31 81-100 LA	24,3
	65	2744	2,8	MR 31 81-90 LC	26,1
	72,5	2463	3,15	MR 31 81-90 LC	23,5
	67,7	2692	1,9	MR 21 80-112 M	16,3
	69,3	2629	1,7	MR 21 80-90 LC	24,5
	67,7	2692	2,36	MR 21 81-112 M	16,3
	72,6	2511	3,75	MR 21 100-100 LA	23,4
	79,2	2254	1,25	MR 31 63-90 LC	21,5
	79,2	2254	1,7	MR 31 64-90 LC	21,5
	82,6	2162	2,65	MR 31 80-100 LA	20,6
	83,4	2141	2,65	MR 31 80-90 LC	20,4
	82,6	2162	3,55	MR 31 81-100 LA	20,6
	86,1	2115	1,06	MR 21 63-112 M	12,8
	84,5	2157	2,5	MR 2180 -112 M	13
	85,6	2130	2,12	MR 21 80-100 LA	19,9
	84,8	2150	2,36	MR 2180 - 90 LC	20,1
	84,5	2157	3,35	MR 21 81-112 M	13
	84,8	2150	2,8	MR 21 81-90 LC	20,1
	92,5	1930	1,5	MR 31 63-90 LC	18,4
	103	1735	1,6	MR 31 63-90 LC	16,5
	92,5	1930	2	MR 31 64-90 LC	18,4
	103	1735	2,12	MR 31 64-90 LC	16,5
	92	1941	2,8	MR 31 80-100 LA	18,5
	95,1	1917	2,8	MR 2180 - 90 LC	17,9
	106	1687	3,35	MR 31 80-100 LA	16,1
	110	1657	1,5	MR 21 63-112 M	10
	105	1737	1,32	MR 21 63-90 LC	16,2
	110	1657	1,8	MR 21 64-112 M	10
	105	1742	2,8	MR 21 80-100 LA	16,3
	106	1723	3,15	MR 21 80-90 LC	16,1
	105	1742	3,55	MR 21 81-100 LA	16,3
	123	1476	1,8	MR 21 63-112 M	8,91
	123	1476	2,24	MR 21 64-112 M	8,91
	117	1553	3,35	MR 21 80-100 LA	14,5
	117	1553	3,35	MR 21 80-90 LC	14,5
	139	1311	1,18	MR 2151 - 90 LC*	12,2
	138	1325	2	MR 21 63-112 M	8
	133	1369	1,6	MR 21 63-100 LA	12,8
	134	1361	1,8	MR 21 63-90 LC	12,7
	138	1325	2,65	MR 21 64-112 M	8
	134	1361	2,24	MR 21 64-90 LC	12,7
	131	1396	3,75	MR 21 80-100 LA	13
	155	1179	1	MR 2150 - 90 LC*	11
	155	1179	1,4	MR 2151 - 90 LC*	11
	152	1198	2,24	MR 21 63-112 M	7,23
	150	1212	2,12	MR 21 63-90 LC	11,3
	152	1198	3	MR 21 64-112 M	7,23
	150	1212	2,65	MR 21 64-90 LC	11,3
	176	1033	1,12	MR 2150 - 90 LC	9,64
	171	1068	1,6	MR 2151 - 90 LC*	9,96
	176	1033	1,5	MR 21 51-90 LC	9,64
	170	1072	2,24	MR 21 63-100 LA	10
	167	1088	2,36	MR 21 63-90 LC	10,2
	170	1072	2,8	MR 21 64-100 LA	10
	167	1088	3,15	MR 21 64-90 LC	10,2
	205	889	1,4	MR 2150 - 90 LC*	8,29
	196	929	1,32	MR 2150 - 90 LC	8,67
	205	889	,	MR 2151 - 90 LC*	8,29
	196	929	1,7	MR 2151 - 90 LC	8,67
	191	955	2,65	MR 21 63-100 LA	8,91
	185	984	2,65	MR 21 63-90 LC	9,18
	204	894	3	MR 21 63-90 LC	8,34
	191	955	3,35	MR 21 64-100 LA	8,91

\mathbf{P}_{1} hp 1)	$\begin{gathered} \mathbf{n}_{2} \\ \text { rom } \end{gathered}$	$\underset{1 \mathrm{~b}}{\mathrm{M}_{2}}$	fs	Gear reducer - Mot 2)		i
3	185	984	3,55	MR 21 64-90 LC	4	9,18
	217 217	841 841	1,5 2	MR 21 50-90 LC MR 21 51-90 LC	4	7,85 785
	213	858	3	MR 2\| 63-100 LA	4	
	213	858	4	MR 21 64-100 LA	4	8
	238	766	1,6	MR $2150-90$ LC	4	7,14
	238	766	2,24	MR 21 51-90 LC	4	7,14
	235	775	3,35	MR 21 63-100 LA	4	7,23
	238	765	3,55	MR 21 63-90 LC	4	7,14
	260	700	1,8	MR 2150 - 90 LC	4	6,53
	260	700	2,5	MR 2151 - 90 LC	4	6,53
	259	704	3,75	MR 21 63-100 LA	4	6,57
	265	688	3,75	MR 21 63-90 LC	4	6,42
	301 301	605	$\begin{aligned} & 2 \\ & 2,65 \end{aligned}$	MR 21 MR 21 20-91-90 LC MR	4	5,65 5,65
	302	603	4,25	MR 21 63-100 LA	4	5,63
	333	548	2,24	MR 2150 - 90 LC	4	5,11
	333	548	2,65	MR 21 51-90 LC	4	5,11
	336	542	4,75	MR 21 63-100 LA	4	5,06
	$\begin{aligned} & 415 \\ & 415 \end{aligned}$	$\begin{aligned} & 439 \\ & 439 \end{aligned}$	$\begin{aligned} & 2,36 \\ & 2,65 \end{aligned}$	MR 21 50-90 LC MR 21 51 - 90 LC	4	$\begin{aligned} & 4,1 \\ & 4,1 \end{aligned}$
4	8,94	27229	2,8	MR 31 180-132 S	6	123
	9,39 9	25924	1 1,5	MR 3I 126-112 MC MR $31140-112$ MC	6	117 117
	9,21	26433	,	MR 31 160-132 S	6	119
	$\begin{aligned} & 11,5 \\ & 11 \end{aligned}$	$\begin{array}{\|l\|l} 21138 \\ 22192 \end{array}$	$\begin{aligned} & 2 \\ & 2,8 \end{aligned}$	MR 3I 140-112 MC MR 3I 160-132 S	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{gathered} 95,5 \\ 100 \end{gathered}$
	$\begin{aligned} & 11,7 \\ & 11,7 \end{aligned}$	$\begin{array}{\|l} 20739 \\ 20739 \end{array}$	$\begin{aligned} & 1,12 \\ & 1,5 \end{aligned}$	MR 3I 125-112 MC MR 3I 126-112 MC	6	$\begin{aligned} & 93,7 \\ & 93,7 \end{aligned}$
	13,1	18536	3,35	MR 31 160-132 S	6	83,8
	14,8	16456	1,4	MR 31 125-112 MC	6	74,4
	14,5	16774	1,32	MR 31 125-100 LB	4	117
	14,8	16456	1,9	MR 31 126-112 MC	6	74,4
	14,5	16774	1,6	MR 31 126-100 LB	4	117
	14,5	16772	2,5	MR 31 140-112 MC	6	75,8
	14,5	16774	2,24	MR 31 140-100 LB	4	117
	17,4	13995	1,12	MR 31 101-112 MC	6	63,2
	17,8	13706	0,95	MR 31 101-100 LB	4	95,7
	18,1	13419	1,7	MR 31 125-100 LB	4	93,7
	18,1	13419	2,24	MR 31 126-100 LB	4	93,7
	17,8	13677	3,15	MR 31 140-100 LB	4	95,5
	19,3	12645	1,18	MR 31 101-112 MC	6	57,1
	19,9	12235	1,9	MR 31 125-112 MC	6	55,3
	19,9	12235	2,5	MR 31 126-112 MC	6	55,3
	19,7	12328	3,55	MR 31 140-112 MC	6	55,7
	21,8	11160	1,06	MR 31 100-100 LB	4	77,9
	21,8	11160	1,4	MR 31 101-100 LB	4	77,9
	22,9	10648	2,24	MR 31 125-100 LB	4	74,4
	22,9	10648	2,8	MR 31 126-100 LB	4	74,4
	21,7	11234	3,75	MR 31 140-112 MC	6	50,8
	23,4	10421	1,12	MR 31 100-112 MC	6	47,1
	25,5	9532	1,25	MR 31 100-112 MC	6	43,1
	24	10124	1,12	MR 31 100-132 S	6	45,7
	23,4	10421	1,5	MR 31 101-112 MC	6	47,1
	25,5	9532	1,7	MR 31 101-112 MC	6	43,1
	24	10124	1,4	MR 31 101-132 S	6	45,7
	23,8	10221	2,24	MR 31 125-112 MC	6	46,2
	24,7	9852	2,36	MR 31 125-132 S		44,5
	23,8	10221	2,8	MR 31 126-112 MC	6	46,2
	23,6	10325	4	MR 31 140-112 MC	6	46,7
	26,9	9056	1,32	MR 31 100-100 LB	4	63,2
	26,9	9056	1,7	MR 31 101-100 LB	4	63,2
	27,8	8759	2,65	MR 31 125-100 LB	4	61,2
	27,8	8759	3,55	MR 31 126-100 LB	4	61,2
	32	7619	1	MR 31 81-100 LB	4	53,2

[^6]* Mounting position B5R (see table ch. 2b).

1) Powers valid for continuous duty $S 1$; increase possible for $S 2 \ldots S 10$ (ch. 2b) in which case M_{2} increases and fs decreases proportionately.
2) For complete designation when ordering, see ch. 3.

* Mounting position B5R (see table ch. 2b).

8 - Manufacturing programme (gearmotors)

[^7]* Mounting position B5R (see table ch. 2b).

\mathbf{P}_{1} hp 1)	$\begin{gathered} \mathbf{n}_{2} \\ \text { rom } \end{gathered}$	$\begin{gathered} M_{2} \\ \mathrm{lb} \text { in } \end{gathered}$	fs	Gear reducer - Motor 2)		i
7,5	37,2	12010	1,18	MR 31 101-132 S	4	45,7
	36,8	12125	1,8	MR 31 125-112 MC	4	46,2
	38,2	11687		MR 31 125-132 S	4	44,5
	36,8	12125	2,36	MR 31 126-112 MC	4	46,2
	38,2	11687	2,65	MR 31-126-132 S	4	44,5
	36,4	12248	3,35	MR 31 140-112 MC	4	46,7
	37,9	11775	3,55	MR 31 140-132 S	4	44,9
	41	10873	1,06	MR 31 100-132 S	4	41,4
	45,1	9899	1,18	MR 31 100-132 S	4	37,7
	41	10873	1,4	MR 31 101-132 S	4	41,4
	45,1	9899	1,6	MR 31 101-132 S	4	37,7
	41	10888	2,12	MR 31 125-112 MC	4	41,5
	45,4	9841	2,36	MR 31 125-112 MC	4	37,5
	42	10621	2,12	MR 31-125-132 S	4	40,5
	41	10888	2,8	MR 31 126-112 MC	4	41,5
	45,4	9841	3,15	MR 31 126-112 MC	4	37,5
	42	10621	3	MR 31 126-132 S	4	40,5
	45,3	9862	4	MR 31 140-132 S	4	37,6
	45,3	10048	1,8	MR 2l 125-132 MB	6	24,3
	45,7	9774	1,18	MR 31 100-112 MC	4	37,2
	49,3	9054	1,25	MR 31 100-132 S	4	34,5
	45,7	9774	1,6	MR 31 101-112 MC	4	37,2
	49,3	9054	1,7	MR 31 101-132 S	4	34,5
	49,9	8943	2,5	MR 31 125-112 MC	4	34,1
	45,7	9763	2,24	MR 31 125-132 S	4	37,2
	50,9	8766	2,65	MR 31 125-132 S	4	33,4
	45,7	9763	2,8	MR 31 126-132 S	4	37,2
	50,9	8766	3,35	MR 31 126-132 S	4	33,4
	54,3	8226	0,95	MR 31 81-112 MC	4	31,3
	54,5	8183	1,4	MR 31 100-112 MC	4	31,2
	57	7826	1,5	MR 31 100-132 S	4	29,8
	54,5	8183	1,8	MR 31 101-112 MC	4	31,2
	57	7826	2	MR 31 101-132 S	4	29,8
	56,3	7923	2,8	MR 31 125-132 S	4	30,2
	57,9	7869	2,65	MR 2l 125-132 MB	6	19
	62,1	7188	1	MR 31 81-112 MC	4	27,4
	59,9	7449	1,5	MR 31 100-112 MC	4	28,4
	59,9	7449	2	MR 31 101-112 MC	4	28,4
	62	7201	3,15	MR 31 125-132 S	4	27,4
	70,1	6370	1,18	MR 31 81-112 MC	4	24,3
	65,5	6814	1,7	MR 31 100-112 MC	4	26
	68,1	6552	1,7	MR 31-100-132 S	4	25
	65,5	6814	2,24	MR 31 101-112 MC	4	26
	68,1	6552	2,24	MR 31 101-132 S	4	25
	72,4	6164	3,75	MR 31 125-132 S	4	23,5
	72,6	6279	1,5	MR 21 100-112 MC		23,4
	70,1	6502	2,8	MR 21 125-132	4	24,3
	75,8	5889	1,9	MR 31 100-112 MC	4	22,4
	74,8	5965	1,9	MR 31 100-132 S	,	22,7
	75,8	5889	2,65	MR 31 101-112 MC	4	22,4
	74,8	5965	2,5	MR 31 101-132 S	4	22,7
	80,5	5543	4	MR 31 125-132 S	4	21,1
	73,5	6199	1,5	MR 21 100-132 MB	6	15
	82,6	5405	1,06	MR 31 80-112 MC	4	20,6
	82,6	5405	1,4	MR 31 81-112 MC	4	20,6
	83,7	5330	2,12	MR 31 100-112 MC	,	20,3
	81,8	5456	2	MR 31-100-132 S	4	20,8
	83,7	5330	2,8	MR 31 101-112 MC	4	20,3
	81,8	5456	2,8	MR 31 101-132 S	4	20,8
	89,3	5100	,	MR 21 100-132 MB		12,3
	88,2	5165		MR 21 100-112 MC	4	19,3
	89,3	5100	2,36	MR 21 101-132 MB	6	12,3
	88,2	5165	2,36	MR 21 101-112 MC	4	19,3
	89,5	5092	,	MR 21 125-132 S	4	19
	92	4852	1,18	MR 31 80-112 MC	4	18,5
	92	4852	1,6	MR 31 81-112 MC	4	18,5
	94,6	4716	2,36	MR 31-100-132 S	4	18
	94,6	4716	3,15	MR 31 101-132 S	4	18

1) Powers valid for continuous duty $S 1$; increase possible for $S 2 \ldots S 10$ (ch. 2b) in which case M_{2} increases and fs decreases proportionately.
2) For complete designation when ordering, see ch. 3.

8 - Manufacturing programme (gearmotors)

\mathbf{P}_{1} hp 1)	\mathbf{n}_{2}	M_{2}	ts	Gear reducer - Motor 2)		i	\mathbf{P}_{1} hp 1)	$\begin{gathered} \mathbf{n}_{2} \\ \mathrm{rpm} \end{gathered}$	$\begin{gathered} M_{2} \\ \text { lb in } \end{gathered}$	ts	Gear reducer - Mot 2)		i	
7,5	$\begin{aligned} & 98,1 \\ & 98,1 \end{aligned}$	$\begin{aligned} & 4645 \\ & 4645 \end{aligned}$	2,24 2,8 1,	MR 2\| 100-112 MC MR 2	101-112 MC	4	$\begin{aligned} & 17,3 \\ & 17,3 \end{aligned}$	7,5	$\begin{aligned} & 425 \\ & 429 \end{aligned}$	$\begin{aligned} & 1072 \\ & 1062 \end{aligned}$	$\begin{aligned} & 2,12 \\ & 4 \end{aligned}$	MR 2\| 64-112 MC MR 2l 80-132 S	$\begin{aligned} & \hline 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 3,96 \end{aligned}$
	106 106	4217 4217	1,32 1,8 1,8		4	16,1 16,1	10	8,94	68073	1,12	MR 31 180-132 MC	6	123	
	105	4268	2,65	MR 31 100-132 S	4	16,3		11	55481	1,12	MR 31160-132 MC	6	100	
	105	4268	3,55	MR 31 101-132 S	4	16,3		10,9 10,7	$\begin{aligned} & 55756 \\ & 56857 \end{aligned}$	1,5 1,32	MR 3I 180-132 MC MR 3I 180-160 M	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 101 \\ & 100 \end{aligned}$	
	105 104	4355 4373	1,12 1,4	MR $2180-112$ MC MR $2181-132 \mathrm{MB}$	4	16,3 10,6		10,7 13,1	$\begin{aligned} & 56857 \\ & 46340 \end{aligned}$	1,32 1,32	MR 3I 180-160 M	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 103 \\ & 83,8 \end{aligned}$	
	105	4355	1,4	MR $2181-112 \mathrm{MC}$	4	16,3		14,2	42758	1,25	MR 31 160-132 M	4	119	
	108	4205	2,5	MR 2\| 100-112 MC	4	15,7		13,1	46570	1,8	MR 31 180-160 M	6	84,2	
	114	4011	2,24	MR 2l 100-132 S	4	15		13,8	44047	1,7	MR 31 180-132 M	4	123	
	108	4205	3,35	MR 21 101-112 MC	4	15,7		18	33762	1,25	MR 31 140-132 MC	6	61	
	117	3883	1,32	MR 21 80-112 MC	4	14,5		18	33762	1,25	MR 31 140-160 M	6	61	
	117	3883	1,7	MR 21 81-112 MC	4	14,5		17	35899	1,7	MR 31 160-132 M	4	100	
	124	3686	2,8	MR $21100-112$ MC	4	13,8		16,9	36077	2,24	MR 31 180-132 M	4	101	
	130	3504	1,5	MR 21 80-132 MB	6	8,46		20,1	30346	0,95	MR 31 126-132 MC	6	54,8	
	131	3489	1,5	MR 21 80-112 MC	4	13		19,9	30655	1,32	MR 31 140-132 MC	6	55,4	
	132	3459	1,32	MR 21 80-132 S	4	12,9		19,9	30655	1,32	MR 31 140-160 M	6	55,4	
	130	3504	2	MR 21 81-132 MB		8,46		20,3	29985		MR 31 160-132 M	4	83,8	
	131	3489	315	MR 21 81-112 MC	4	13		20,2	30133	2,8	MR 31 180-132 M	4	84,2	
	137	3337	3,15	MR 21 100-112 MC	4			22,3	27249	1,12	MR 31 126-132 MC	6	49,3	
	138	3300	3	MR 2\| 100-132 S MR $21101-132 \mathrm{~S}$	4	12,3 123		22,3	27249	1,12	MR 31 126-160 M	6	49,3	
	138	3300	3,55	MR 2l 101-132 S				22,7	26792		MR 31 126-132 M	4	74,8	
	147	3105	1,7	MR 21 80-132 MB	6	7,5		21,9	27773	1,6	MR 31 140-132 MC	6	50,2	
	145	3151	1,6	MR 21 80-112 MC	4	11,8		22,7	26792	1,4	MR 31 140-132 M	4	74,8	
	147	3105	2,36	MR 2181 -132 MB	6	7,5		22,1	27510	2,24	MR 31 160-132 MC	6	49,7	
	145	3151	2,12	MR 21 81-112 MC	4	11,8		20,8	29220	2,12	MR 31 160-160 M	6	52,8	
	150	3038	3,55	MR 21 100-112 MC	4	11,3		22,6	26925	3	MR 31 180-132 MC	6	48,7	
	154	2968	3,35	MR 2I 100-132 S	4	11,1		24,7	24629	0,95	MR 31 125-132 MC	6	44,5	
	170	2680	1,12	MR 21 64-112 MC	4	10		24,7	24629	1,25	MR 31 126-132 MC	6	44,5	
	161	2831	1,9	MR 21 80-112 MC	4	10,6		24,5	24816	1,8	MR 31 140-132 MC	6	44,9	
	182	2509	2,12	MR 21 80-112 MC	4	9,36		25,4	23991	1,7	MR 31 140-160 M	6	43,4	
	161	2829	1,7	MR 21 80-132 S	4	10,6		25,5	23848	2,5	MR 31 160-132 MC	6	43,1	
	181	2523	2	MR 21 80-132 S	4	9,41		25,9	23492	3,75	MR 31 180-160 M	-	42,5	
	173	2635	2,8	MR 21 81-132 MB	6	-6,36		28,4	21434	1,12	MR $31125-132 \mathrm{M}$	4	59,9	
	161 182	2831 2509	2,5	MR $2181-112 \mathrm{MC}$ MR 21 $81-112 \mathrm{MC}$	4	10,6 9,36		28,4	21434	1,4	MR 31 126-132 M	4	59,9	
	161	2829	2,12	MR ${ }^{\text {2 }}$ 81-132 S	4	10,6		27,9	21846	1,9	MR 31 140-132 M	4	61	
	181	2523	2,5	MR $2181-132 \mathrm{~S}$	4	9,41		25,9	23482	2,65	MR 31 160-132 M	,	65,6	
	164	2779	3,75	MR $21100-112 \mathrm{MC}$	4	10,4		25,8	23598	3,75	MR 31 180-132 M	4	65,9	
	170	2687	,	MR $21100-132 \mathrm{~S}$	4	10		31	19635	1,12	MR 31 125-132 M	4	54,8	
	191	2388	1,06	MR 21 63-112 MC	4	8,91		31,6	19275	1,6	MR 31 126-160 M	6	34,8	
	191	2388	1,32	MR 21 64-112 MC	4	8,91		31	19635	1,4	MR 31 126-132 M		54,8	
	201	2267	2,24	MR 21 80-132 S	4	8,46		31,3 307	18830	2,24	MR 31140-132 MC	4	34	
	201	2267	3	MR 21 81-132 S	4	8,46		30,7 29,6	19836 20539	2	MR 31 140-132 M MR 31 $160-132 \mathrm{M}$	4	55,4 57,4	
	186	2446	4,25	MR 21 100-132 S	4	9,13		29,6	20539	3	MR 31 160-132 M	4	57,4	
	213	2144	1,18	MR 21 63-112 MC	4	8		34,5 34,5	17632	1,32 1,7 1	MR $31125-132 \mathrm{M}$ MR $31126-132 \mathrm{M}$	4	49,3 49,3	
	213	2144	1,6	MR 21 64-112 MC	4			36,2	16825	2,65	MR 31 140-132 MC		30,4	
	214 227	2129 2009	2,5 2,65	MR 2I $80-112$ MC MR 2 I $80-132 \mathrm{~S}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	7,95		33,9	17971	2,36	MR 31 140-132 M	4	50,2	
	214	2129	3,35	MR $2181-112 \mathrm{MC}$	4	7,95		34,2	17801	3,55	MR 31 160-132 M		49,7	
	227	2009	3,55	MR 21 81-132 S	,	7,5		36,9	16492	0,95	MR 31 101-132 MC	6	29,8	
	235	1938	1,32	MR 21 63-112 MC	4			38,2	15936	1,5	MR 31 125-132 M	4	44,5	
	235	1938	1,8	MR 2\| 64-112 MC	4	7,23		38,2	15936	1,9	MR 31 126-132 M		44,5	
	238	1911	2,8	MR 21 80-112 MC	4	7,13		37,9	16057	2,65	MR 31 140-132 M	4	44,9	
	238	1911	3,75	MR 2181 -112 MC	4	7,13		39,4	15431	3,75	MR 31 160-132 M	4	43,1	
	259	1761	1,5	MR 21 63-112 MC	4	$\begin{aligned} & 6,57 \\ & 6,57 \\ & 6,2 \\ & 6,36 \end{aligned}$			14827 13498		MR $31101-132 \mathrm{M}$ MR 31 101-132 M	4	41,4 37	
	259	1761	2	MR 21 64-112 MC	4			42	13488	1,6		4	40,5	
	274	1661	3,15	MR 21 80-112 MC	4			42	14483	2,12	MR 31 126-132 M	4	40,5	
	267	1705	3	MR 21 80-132 S	4			41,6	14632	2,8	MR 31 140-132 M	4	40,9	
	302 302	$\begin{aligned} & 1507 \\ & 1507 \end{aligned}$	$\begin{aligned} & 1,7 \\ & 2,12 \end{aligned}$	$\begin{array}{ll} \text { MR 2I } & 63-112 \text { MC } \\ \text { MR 2I } & 64-112 \text { MC } \end{array}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 5,63 \\ & 5,63 \\ & 5,71 \end{aligned}$		45,3	13448	2,	MR 31 140-132 M	4	37,6	
	298	1530	3,35	MR 21 80-132 S	$\begin{aligned} & 4 \\ & 4 \end{aligned}$			49,3	12346	1,25	MR 31 101-132 M	4	34,5	
								45,7	13313	1,6	MR 31 125-132 M		37,2	
	336 336	1356 1356	1,92	MR 21 63-112 MC	4	5,06 5,06		50,9	11954	1,9	MR 31 125-132 M	4	33,4	
	343	1330	4	MR 21 80-132 S	4	4,96		-45,9	11954	2,12	MR MR 31 126-126-132 M M	4	37,2 33,4	
	425	1072	2	MR 21 63-112 MC	4	4		49,9	12184	3,35	MR 31 140-132 M	4	34	

1) Powers valid for continuous duty S 1 ; increase possible for $\mathrm{S} 2 \ldots \mathrm{~S} 10$ (ch. 2b) in which case M_{2} increases and fs decreases proportionately

For complete designation when ordering, see ch. 3

* Mounting position B5R (see table ch. 2b).

\mathbf{P}_{1} hp 1)	$\underset{\text { rpm }}{\mathbf{n}_{2}}$	$\begin{gathered} M_{2} \\ \mathrm{lb} \text { in } \end{gathered}$	fs	Gear reducer - Motor 2)	i	\mathbf{P}_{1} hp 1)	$\begin{gathered} \mathbf{n}_{2} \\ \mathrm{rpm} \end{gathered}$	$\begin{gathered} M_{2} \\ \mathrm{lb} \text { in } \end{gathered}$	fs	Gear reducer - Motor		i
10	57	10671	1,06	MR 3I 100-132 M 4	29,8	10	137	4550	3	MR 2l 101-132 M	4	12,5
	57	10671	1,5	MR 31 101-132 M 4	29,8		138	4500	2,65	MR 2l 101-132 M	4	12,3
	56,3	10805	2,12	MR 3I 125-132 M 4	30,2		134	4640	4,5	MR 21 125-132 M	4	12,7
	56,3	10805	2,8	MR 3I 126-132 M 4	30,2		145	4296	1,18	MR 2I 80-132 M *	4	11,8
	55,9	10887	4	MR 3I 140-132 M 4	30,4		147	4234	1,7	MR 2l 81-132 MC	6	7,5
	57,9	10731	1,9	MR 2l 125-132 MC 6	19		145	4296	1,5	MR 2\| 81-132 M *	4	11,8
	54,3	11445	1,6	MR 21 125-160 M 6	20,3		154	4047	2,5	MR 2\| 100-132 M	4	11,1
	61,2	9938	1,12	MR 31-100-132 MC 6	18		154	4047	3,15	MR 21 101-132 M	4	11,1
	61,2	9938	1,6	MR 3I 101-132 MC 6	18		161	3861	1,4	MR 2\| 80-132 M *	4	10,6
	62	9819	2,36	MR 31 125-132 M 4	27,4		182	3422	1,5	MR 2l 80-132 M *	4	10,6 9,36
	62	9819	3,15	MR 3I 126-132 M 4	27,4		161	3858	1,25	MR 21 80-132 M	4	10,6
	68,1	8934	1,25	MR 3I 100-132 M 4	25		181	3440	1,5	MR 21 80-132 M	4	9,41
	68,1	8934	1,6	MR 31101-132 M 4	25		161	3861	1,8	MR 21 81-132 M *	4	10,6
	72,4	8405	2,65	MR 31 125-132 M 4	23,5		182	3422	2,12	MR 2\| 81-132 M *	4	9,36
	72,4	8405	3,55	MR 31 126-132 M 4	23,5		161	3858	1,6	MR 2\| 81-132 M	4	10,6
	72,6	8562	1,12	MR 21 100-132 M * 4	23,4		181	3440	1,9	MR 2\| 81-132 M	4	9,41
	72,4	8585	2,65	MR 2l 125-132 MC 6	15,2		170	3664	2,8	MR 2\| 100-132 M	4	10
	69,3	8963	2,24	MR 2l 125-160 M 6	15,9		170	3664	3,75	MR 2\| 101-132 M	4	10
	70,1	8866	2	MR 21 125-132 M 4	24,3		201	3092	1,7	MR 2\| 80-132 M	4	8,46
	74,8	8133	1,4	MR 31-100-132 M 4	22,7		201	3092	2,24	MR 21 81-132 M	4	8,46
	74,8	8133	1,9	MR 31101-132 M 4	22,7		186	3335	3,15	MR 21 100-132 M	4	9,13
	80,5	7559	3	MR 3I 125-132 M 4	21,1		204	3051	3,35	MR 21 100-132 M	4	8,35
	73,5	8454	1,12	MR 2l 100-132 MC 6	15		213	2924	1,18	MR 2\| 64-132 M	4	8
	73,5	8454	1,12	MR 2l 100-160 M 6	15		227	2740	1,9	MR 2l 80-132 M	4	7,5
	77,8	7985	2,65	MR 2l 125-132 MC 6	14,1		227	2740	2,5	MR 2l 81-132 M	4	7,5
	81,8	7439	1,5	MR 3I 100-132 M 4	20,8		235	2642	1,32	MR 21 64-132 M	4	7,23
	81,8	7439	2	MR 3I 101-132 M MR 4 $100-132 ~ M C ~$	20,8		238	2606	2	MR 2l 80-132 M	4	7,23 7,13
	89,3	6954	1,5	MR 21 100-132 MC 6	12,3		238	2606	2,65	MR 2\| 81-132 M *	4	7,13
	89,3	6954	1,5	MR 2l 100-160 M *	12,3		236	2637	4	MR 2\| 100-132 M	4	7,22
	88,2 89,3	7043	1,4 1,8	MR $21100-132 ~ M ~ * ~$	19,3 12,3		259	2401	1,5	MR 2\| 64-132 M *	4	6,57
	89,3	6954	1,8	MR 2l 101-160 M 6	12,3		267	2325	2,24	MR 2\| 80-132 M	4	6,36
	88,2	7043	1,7	MR 2l 101-132 M * 4	19,3		267	2325	3	MR 2\| 81-132 M	4	6,36
	89,5	6943	2,8	MR 2l 125-132 M 4	19		302	2056	1,6	MR 2\| 64-132 M *	4	5,63
	89,5	6943	3,55	MR 2l 126-132 M 4	19		298	2087	2,5	MR 21 80-132 M	4	5,71
	94,6	6430	1,7	MR 31-100-132 M 4	18		298	2087	3,15	MR 2\| 81-132 M	4	5,71
	94,6	6430	2,36	MR 31101-132 M 4	18		336	1849	1,6	MR 2\| 64-132 M *	4	5,06
	99,3	6254	1,7	MR 21 100-132 MC 6	11,1		343	1814	2,8	MR 21 80-132 M	4	4,96
	99,3	6254	1,7	MR 2l 100-160 M 6	11,1		343	1814	3,15	MR 21 81-132 M	4	4,96
	98,1	6334	1,7	MR 2l 100-132 M * 4	17,3						4	
	99,3 99	6254	2,12	$\begin{array}{ll}\text { MR 2l 101-132 MC } \\ \text { MR } & \text { 2l } 101-160\end{array}$	11,1 11,1		$\begin{aligned} & 425 \\ & 429 \end{aligned}$	1449	$\begin{aligned} & 1,6 \end{aligned}$	MR 2\| 80-132 M	4	3,96
	98,1	6334	2,12	MR 21 101-132 M * 4	17,3	12,5	14,2	52450	1	MR 3I 160-132 MB	4	119
	100	6186	3,35	MR 2l 125-132 M 4	16,9		13,8	54031	1,4	MR 3I 180-132 MB	4	123
	105	5820	1,9	MR 3I 100-132 M 4	16,3		17	44036	1,4	MR 3I 160-132 MB	4	100
	105	5820	2,65	MR 31 101-132 M * 4	16,3		16,9	44255	1,9	MR 3I 180-132 MB	4	101
	110	5662	1,9	MR 2l 100-132 MC 6	10		20,3	36781	1,7	MR 3I 160-132 MB	4	83,8
	108	5735	1,9	MR 2l 100-132 M * 4	15,7		20,2	36964	2,24	MR 3I 180-132 MB	4	84,2
	114	5470	1,7	MR 2l 100-132 M 4	15		22,7	32865	1,12	MR 3I 140-132 MB	4	74,8
	110	5662	2,5	MR 2l 101-132 MC 6	10		28,4	26292	1,18	MR 3I 126-132 MB	4	59,9
	110	5662	2,5	MR 2l 101-160 M * 6	10		27,9	26798	1,6	MR 3I 140-132 MB	4	61
	108	5735	2,5	MR 2l 101-132 M * 4	15,7		25,9	28804	2,12	MR 3I 160-132 MB	4	65,6
	112	5555	4	MR 2l 125-132 M 4	15,2		25,8	28947	3	MR 3I 180-132 MB	4	65,9
	117	5295	1	MR 2I 80-132 M * MR 21 $81-132$	14,5 145		31	24086	1,18	MR 3I 126-132 MB	4	54,8
	117	5295 5155	1,25 2,12	MR 2l 81-132 M MR 2l 100-132 MC 4	14,5 9,13		30,7	24332	1,7	MR 3l 140-132 MB	4	55,4
	127	4895	2,12	MR 2l 100-160 M 6	8,67		29,6	25195	2,5	MR 3I 160-132 MB	4	57,4
	124	5026	2,12	MR 2l 100-132 M * 4	13,8		29,8	25088	3,35	MR 3I 180-132 MB	4	57,1
	121	5155	2,8	MR 2l 101-132 MC 6	9,13		34,5	21628	1,06	MR 3I 125-132 MB	4	49,3
	127	4895	2,65	MR 2l 101-160 M 6	8,67		34,5	21628	1,4	MR 3I 126-132 MB	4	49,3
	124	5026	2,65	MR 2l 101-132 M * 4	13,8		33,9	22044	1,9	MR 3I 140-132 MB	4	50,2
	120	5167	4	MR 2l 125-132 M 4	14,1		34,2	21836	2,8	MR 3I 160-132 MB	4	49,7
	131	4758	1,12	MR 21 80-132 M * 4	13		34,9	21371	3,75	MR 3I 180-132 MB	4	48,7
	132	4717	0,95	MR 21 80-132 M 4	12,9		38,2	19549	1,18	MR 3I 125-132 MB	4	44,5
	131	4758	1,5	MR 21 81-132 M * 4	13		38,2	19549	1,6	MR 3I 126-132 MB	4	44,5
	137	4550	2,36	MR 2l 100-132 M * 4	12,5		37,9	19697	2,12	MR 3I 140-132 MB	4	44,9
	138	4500	2,24	MR 2l 100-132 M 4	12,3		39,4	18929	3,15	MR 3I 160-132 MB	4	43,1

[^8]

$\begin{aligned} & \mathbf{P}_{1} \\ & \text { hp } \\ & \\ & \text { 1) } \end{aligned}$	$\begin{gathered} \mathbf{n}_{2} \\ \text { rom } \end{gathered}$	$\begin{gathered} M_{2} \\ \text { lb in in } \end{gathered}$	fs	Gear reducer - Motor 2)		i
12,5	298	2560	2	MR 2\| 80-132 MB	4	$5,71$
	343 343	2225 2225	2,36 2,5	$\begin{array}{ll} \text { MR 2I } & 80-132 \text { MB } \\ \text { MR } & 21 \\ 81-132 M \end{array}$	4	$\begin{aligned} & 4,96 \\ & 4,96 \end{aligned}$
	$\begin{aligned} & 429 \\ & 429 \end{aligned}$	$\begin{aligned} & 1777 \\ & 1777 \end{aligned}$	$\begin{aligned} & 2,5 \\ & 2,5 \end{aligned}$		4	$\begin{aligned} & 3,96 \\ & 3,96 \end{aligned}$
15	13,1	68302	1,25	MR 31 180-160 L	6	84,2
	13,8	64602	1,18	MR 31 180-132 MC	4	123
	$\begin{aligned} & 16,3 \\ & 17 \end{aligned}$	54724 52652	1,12 1,18	MR $31160-160 \mathrm{~L}$ MR $31160-132$ MC	6	67,4 100
	16,9	52914	1,6	MR 31 180-132 MC	4	101
	16,5	53958	1,4	MR 31 180-160 M	4	103
	20,3	43977	1,4	MR 31 160-132 MC	4	83,8
	20,3	43977	1,4	MR 31 160-160 M	4	83,8
	20,2	44196	1,9	MR 31 180-132 MC	4	84,2
	20,2	44196	1,9	MR 3I 180-160 M	4	84,2
	21,9	40734	1,06	MR 31 140-160 L	6	50,2
	$\begin{aligned} & 25,4 \\ & 25,2 \end{aligned}$	$\begin{array}{\|l} 35187 \\ 35409 \end{array}$	$\begin{aligned} & 1,18 \\ & 1,7 \end{aligned}$	MR $31140-160 \mathrm{~L}$ MR $31160-160 \mathrm{M}$	6	$\begin{aligned} & 43,4 \\ & 67,4 \end{aligned}$
	25,1	35585	2,24	MR 31 180-160 M	4	67,8
	28,5	31277	0,95	MR 31 126-160 L	6	38,5
	28,4	31436	0,95	MR 31 126-132 MC	4	59,9
	27,9	32041	1,32	MR 31 140-132 MC	4	61
	27,9	32041	1,32	MR 31140-160 M	4	61
	27,5	32488	1,9	MR 31 160-160 L	6	40
	25,9	34440	1,8	MR 31 160-132 MC	4	65,6
	25,8	34611	2,5	MR 31 180-132 MC	4	65,9
	28,5	31308	2,65	MR 31 180-160 M	4	59,6
	31,6	28270	1,12	MR 31 126-160 L	6	34,8
	31	28799	1	MR 31 126-132 MC	4	54,8
	31,3	28485	1,5	MR 31 140-160 L	6	35,1
	30,7	29092	1,4	MR 31 140-132 MC	4	55,4
	30,7	29092	1,4	MR 31 140-160 M	4	55,4
	29,6	30124	2,12	MR 31 160-132 MC	4	57,4
	29,6	30190	1,9	MR 31160-160 M	4	57,5
	29,8	29996	2,8	MR 31 180-132 MC	4	57,1
	32	27868	3	MR 31 180-160 M	4	53,1
	34,5	25860	1,18	MR 31 126-132 MC	4	49,3
	34,5	25860	1,18	MR 31 126-160 M	4	49,3
	33,9	26357	1,6	MR 31 140-132 MC	4	50,2
	33,9	26357	1,6	MR 31 140-160 M	4	50,2
	34,2	26108	2,36	MR 31 160-132 MC	4	49,7
	32,2	27730	2,12	MR 31 160-160 M	4	52,8
	32,2	27689	3,15	MR 31 180-132 MC	4	52,7
	34,9	25552	3,15	MR 31 180-132 MC	4	48,7
	38,2	23373	1	MR 31 125-132 MC	4	44,5
	39,6	22538	1	MR 31 125-160 M	4	42,9
	38,2	23373	1,32	MR 31 126-132 MC	4	44,5
	39,6	22538	1,25	MR 31-126-160 M	4	42,9
	37,9	23551	1,8	MR 31 140-132 MC	4	44,9
	39,2	22768	1,7	MR 31 140-160 M	4	43,4
	39,4	22632	2,65	MR 31 160-132 MC	4	43,1
	36,8	24255	2,5	MR 31160-160 M	4	46,2
	37	24152	3,55	MR 31 180-160 M	4	46
	42	21242	1,06	MR 31 125-132 MC	4	40,5
	44,1	20238	1,12	MR 31 125-160 M	4	38,5
	42	21242	1,5	MR 31 126-132 MC	4	40,5
	44,1	20238	1,5	MR 31 126-160 M	4	38,5
	41,6	21461	,	MR 31 140-132 MC	4	40,9
	45,3	19724	2	MR 31 140-132 MC	4	37,6
	43,3	20627	2	MR 31 140-160 M	4	39,3
	45,1	19796	3,15	MR 31 160-132 MC	4	37,7
	42,5	21021	3	MR 31 160-160 M	4	40
	45,7	19525	1,12	MR 31 125-132 MC	4	37,2
	50,9	17533	1,32	MR 31 125-132 MC	4	33,4
	48,8	18292	1,25	MR 31 125-160 M	4	34,8

[^9]

1) Powers valid for continuous duty $S 1$; increase possible for $S 2 \ldots S 10(c h .2 b)$ in which case M_{2} increases and fs decreases proportionately.
2) For complete designation when ordering, see ch. 3.

$\begin{aligned} & \mathbf{P}_{1} \\ & \mathrm{hp} \\ & \\ & \text { 1) } \end{aligned}$	$\begin{gathered} \mathbf{n}_{2} \\ \text { rom } \end{gathered}$	$\begin{gathered} M_{2} \\ \hline \end{gathered}$	ts	Gear reducer - Motor		i	$\begin{aligned} & \mathbf{P}_{1} \\ & \mathrm{hp} \\ & \\ & \text { 1) } \end{aligned}$	$\begin{gathered} \mathbf{n}_{2} \\ \mathrm{rom} \end{gathered}$	$\begin{gathered} M_{2} \\ \mathrm{lb} \text { in } \end{gathered}$	fs	Gear reducer -	Mot		i
20	27,9	43692	0,95	MR 31 140-160 L	L	61	20	134	9279	2,36	MR 21 125-160	L	4	12,7
	27,5	44301	1,4	MR 31 160-180 L	L	40		134	9279	3	MR 21 126-160	L	4	12,7
	28,5	42693	1,9	MR 31 180-160 L	L 4	59,6		154	8094	1,25	MR 21 100-160		4	11,1
	30,7	39671	1	MR 31 140-160 L	L	55,4		154	8094	1,6	MR 21 101-160	L	4	11,1
	29,6	41168	1,4	MR 31 160-160 L	L 4	57,5		149	8320	2,5	MR 21 125-160		4	11,4
	32	38002	2,24	MR 31 180-160 L	L 4	53,1		149	8320	3,15	MR 21 126-160	L	4	11,4
	33,9	35942	1,18	MR 31 140-160 L	L 4	50,2		170	7328	1,4	MR 21 100-160	L	4	10
	32,2	37814	1,6	MR 31 160-160 L	L 4	52,8		170	7328	1,9	MR 21 101-160	L	4	10
	39,2	31047	1,25	MR 31 140-160 L	L 4	43,4		166	7471	2,8	MR 21 125-160		4	10,2
	36,8	33076	1,9	MR 31 160-160 L	L 4	46,2		166	7471	3,75	MR 21 126-160	L	4	10,2
	37	32935	2,65	MR 31 180-160 L	L 4	46		196	6334	1,6	MR 21 100-160	L	4	8,67
	40	30401	2,8	MR 31 180-160 L	L 4	42,5		196	6334	,	MR 21 101-160	L	4	8,67
	44,1	27598	1,06	MR 31 126-160 L	L	38,5		184	6753	3,15	MR 21 125-160	L	4	9,24
	43,3	28128	1,5	MR 31 140-160 L	L 4	39,3		202	6137	3,35	MR 2l 125-160	L	4	8,4
	42,5	28665	2,12	MR 31 160-160 L	L 4	40		217	5735	1,8	MR 21 100-160	L	4	7,85
	43,4	28056	2,8	MR 31 180-160 L	L 4	39,2		217	5735	2,36	MR 2\| 101-160	L	4	7,85
	48,8		1,25	MR 31 126-160 L	L	34,8		238	5221	2	MR 2\| 100-160	L	4	7,14
	48,4	25133	1,7	MR 31 140-160 L	L 4	35,1		238	5221	2,65	MR 2\| 101-160		4	7,14
	49	24849	2,36	MR 31 160-160 L	L 4	34,7		237	5253	2,65	MR 21 125-160		4	7,19
	48,7	24973	3,35	MR 31 180-160 L	L 4	34,9		260	4775	2,12	MR 2\| 100-160	L	4	6,53
	53,7	22669	1	MR 31 125-160 L	L	31,7		260	4775	2,	MR 2l 101-160	L	4	6,53
	53,7	22669	1,32	MR 31 126-160 L	L 4	31,7		263	4725	4,5	MR 2l 125-160	L	4	6,46
	53,1	22903	1,8	MR 31 140-160 L	L 4	32			4127	2,5	MR 21 100-160	L	4	5,65
	56	21735	2,8	MR 31 160-160 L	L 4	30,4		301	4127	3,15	MR 21 101-160	L	4	5,65
	56,2 58	21643 21409	4 2	MR $31180-160 \mathrm{~L}$ MR $21160-180 \mathrm{~L}$	L 4	30,2 19		333	3736		MR 21 100-160			
	58 58,4	21409 20837	2,36 1,06	MR 21 160-180 L MR 31 125-160 L	L 6	19		333 333	$\begin{aligned} & 3736 \\ & 3736 \end{aligned}$	2,8 3,15	MR 2l 101-160	L	4	$\begin{aligned} & 5,11 \\ & 5,11 \end{aligned}$
	58,4 59,9	20837	1,06 1,5	MR 3I 125-160 L 4 MR 3I 126-180 L 6 MR 3\| 126-160 L 4 MR 3I 140-160 L 4 MR 31 140-160 L 4 MR 2I 160-180 L 6		29,1 18,4		415	2993	2,8	MR 21 100-160	L	4	4,1
	58,4	20837	1,32			29,1	25				MR 31 160-180		4	
	57,8	21050	1,8			29,4								
	63,8	19071	2,12			26,6		25,1	59848	1,4	MR 31 180-180		4	67,8
	63,5	19570	2,8			17,3		28,5	52655	1,5	MR 31 180-180	M	4	59,6
	65,1	18711	1,18	MR 31 125-160 L	L 4	26,1		30,4	49339	1,25	MR 31 160-200	LR	6	36,2
	72	16912	1,32	MR 31 125-160 L	L 4	23,6		29,6	50774	1,12	MR 31 160-180		4	57,5
	65,1	18711	1,5	MR 31 126-160 L	L 4	26,1		32	46869	1,8	MR 31 180-180	M	4	53,1
	72	16912	1,8	MR 31 126-160 L	L 4	23,6		35,1	42760	1,5	MR 31 160-200	LR	6	31,3
	71,4	17040	2,5	MR 31 140-160 L	$\text { L } \quad 4$	23,8		32,2	46637	1,32	MR 31 160-180		4	52,8
	64,6	18837	3,15	MR 31 160-160 L	$\text { L } 4$	26,3		32,2 39,2	46837 38292	1,32 1,06			4	+3,8
	72	16908	3,55	MR 31 160-160 L	L 4	23,6		39,2 36,8	$\begin{aligned} & 38292 \\ & 40793 \end{aligned}$	$\begin{aligned} & 1,06 \\ & 1,5 \end{aligned}$	$\begin{aligned} & \text { MR 3I } 140-180 \\ & \text { MR 31 } 160-180 \end{aligned}$	M	4	43,4 46,2
	79,2	15370	1,5	MR 31 125-160 L	L 4	21,5		36,8 37	$\begin{aligned} & 40793 \\ & 40620 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 2,12 \end{aligned}$	MR 31 160-180 MR $31180-180$	M	4	46,2 46
	79,2	15370	1,9 3	MR 31126-160 L	L 4	21,5		37 40	37495	2,12	MR 31 180-180	M	4	42,5
	79	15723	3,75	MR $21160-180 \mathrm{~L}$	L 6									
	83,3	14618	2,8	MR 31 140-160 L	L 4	20,4		43,3	$\begin{aligned} & 34692 \\ & 35354 \end{aligned}$	$\begin{aligned} & 1,18 \\ & 1,8 \end{aligned}$	$\begin{aligned} & \text { MR 3I 140-180 } \\ & \text { MR } 3 \text { I 160-180 } \end{aligned}$		4	$\begin{aligned} & 39,3 \\ & 40 \end{aligned}$
	86,1	14433	2,8 1,4 1	MR 21 125-180 L	L 6	12,8		42,5	$\begin{aligned} & 35354 \\ & 34602 \end{aligned}$	$\begin{aligned} & 1,8 \\ & 2,24 \end{aligned}$	MR 311 160-180 MR 31 180-180	M	4	$\begin{aligned} & 40 \\ & 39,2 \end{aligned}$
	83,9	14811	${ }_{1}^{1,25}$	MR 21 125-160 L	$\begin{array}{ll} \mathrm{L} & 4 \\ 1 \end{array}$	20,3				1	MR 31 126-180	M	4	
	86,1 86,1	14433 14433	1,7 2,36	MR $21126-180 \mathrm{~L}$ MR $21140-180 \mathrm{~L}$	$\begin{array}{ll} \mathrm{L} & 6 \\ \mathrm{~L} & 6 \end{array}$	12,8 12,8		48,8	30998	1,4	MR 31 140-180	M	4	35,1
	86,1 89,7	13853	2,36 3,55	MR MR $21160-160$ L L	L 4	${ }_{19}^{19}$		49	30647	1,9	MR 31 160-180	M	4	34,7
	92,5	13156	1,7	MR 31-125-160 L	L	18,4		48,7	30799	2,65	MR 31 180-180	M	4	34,9
	103	11832	1,9	MR 31 125-160 L	L 4	16,5		53,7	27959	1,12	MR 31 126-180	M	4	31,7
	92,5	13156	2,24	MR 31 126-160 L	L 4	18,4		53,1	28247	1,5	MR 31 140-180	M	4	32
	103	11832	2,5	MR 31 126-160 L	L 4	16,5		56	26807	2,24	MR 31 160-180	M	4	30,4
	92,2	13208	3	MR 31 140-160 L	L 4	18,4		56,2	26693	3,15	MR 31 180-180	M	4	30,2
	96,6	12859	1,6	MR $21125-180 \mathrm{~L}$	L 6	11,4		58,4	25699	1,06	MR 31 126-180	M	4	29,1
	96,6	12859	2	MR 21126 -180 L	L 6	11,4		57,8	25961	1,5	MR 31 140-180	M	4	29,4
	95,7	12990	2,8	MR 21 140-180 L	L 6	11,5		63,8	23520	1,7	MR 31 140-180	M	4	26,6
	98,1	12663	4,25	MR $21160-160 \mathrm{~L}$	L	17,3		62,3	24098	3,55	MR 31 180-180	M	4	27,3
	107	11599	1,7	MR $21125-160$ L	L 4	15,9		65,1	23077	0,95	MR 31 125-180	M	4	26,1
	108	11547	2,5	MR 21 126-180 L	L 6	10,2		72	20858	1,06	MR 31 125-180	M	4	23,6
	107	11599	2,12	MR 21 126-160 L	L 4	15,9		65,1	23077	1,25	MR 31 126-180	M	4	26,1
	107	11599	3	MR $21140-160 \mathrm{~L}$	L 4	15,9		72	20858	1,4	MR 31 126-180	M	4	23,6
	120	10334	2	MR $21125-160$ L	L 4	14,1		71,4	21016	2	MR 31 140-180	M	4	23,8
	120	10334	2,5	MR 21 126-160 L	L 4	14,1		64,6	23233	2,65	MR 31 160-180	M	4	26,3
	119	10439	3,55	MR $21140-160 \mathrm{~L}$	L 4	14,3		72	20854	3	MR 31 160-180	M	4	23,6
	138	9000	1,12	$\begin{array}{ll} \text { MR } 21 \text { 100-160 L } & 4 \\ \text { MR } 21 & 101-160 \mathrm{~L} \\ 4 \end{array}$		12,3		79,2	18956	$1,18$	MR 31 125-180	M	4	$21,5$
	138	9000	1,32			12,3		79,2	18956	1,6	MR 31 126-180	M	4	21,5

[^10]

1) Powers valid for continuous duty $S 1$; increase possible for $S 2 \ldots S 10$ (ch. 2b) in which case M_{2} increases and fs decreases proportionately.
2) For complete designation when ordering, see ch. 3 .

$\begin{aligned} & \mathbf{P}_{1} \\ & \text { hp } \\ & \text { 1) } \end{aligned}$	$\begin{gathered} \mathbf{n}_{2} \\ \mathrm{rom} \end{gathered}$	$\begin{gathered} M_{2} \\ 1 \mathrm{~b} \text { in } \end{gathered}$	fs	Gear reducer - 2)	- Motor	i
40	$\begin{aligned} & 47 \\ & 47,2 \\ & 51,2 \end{aligned}$	$\begin{aligned} & 51770 \\ & 51550 \\ & 47585 \end{aligned}$	$\begin{aligned} & 1,18 \\ & 1,6 \\ & 1,7 \end{aligned}$	MR 31 160-200 MR 31 180-200 MR 31 180-200	$\begin{array}{ll} \mathrm{L} & 4 \\ \mathrm{~L} & 4 \\ \mathrm{~L} & 4 \end{array}$	$\begin{aligned} & 36,2 \\ & 36 \\ & 33,2 \end{aligned}$
	54,3 55,4	$\begin{aligned} & 44868 \\ & 43913 \end{aligned}$	$\begin{aligned} & 1,4 \\ & 1,8 \end{aligned}$	$\begin{aligned} & \text { MR 3I 160-200 } \\ & \text { MR 3I 180-200 } \end{aligned}$	$\begin{array}{ll} \mathrm{L} & 4 \\ \mathrm{~L} & 4 \end{array}$	$\begin{aligned} & 31,3 \\ & 30,7 \end{aligned}$
	$\begin{aligned} & 63,8 \\ & 62,6 \\ & 62,3 \end{aligned}$	$\begin{aligned} & 38141 \\ & 38894 \\ & 39087 \end{aligned}$	$\begin{aligned} & 1,06 \\ & 1,5 \\ & 2,12 \end{aligned}$	MR 31 140-200 MR 31 160-200 MR 31 180-200	$\begin{array}{lll}L & 4 \\ L & 4 \\ L & 4\end{array}$	$\begin{aligned} & 26,6 \\ & 27,2 \\ & 27,3 \end{aligned}$
	$\begin{aligned} & 71,4 \\ & 71,6 \\ & 71,9 \end{aligned}$	$\begin{aligned} & 34080 \\ & 34021 \\ & 33876 \end{aligned}$	$\begin{aligned} & 1,25 \\ & 1,8 \\ & 2,5 \end{aligned}$	MR 31 140-200 MR 31 160-200 MR 31 180-200	$\begin{array}{lll}L & 4 \\ L & 4 \\ L & 4\end{array}$	$\begin{aligned} & 23,8 \\ & 23,8 \\ & 23,7 \end{aligned}$
	79,6	30582	2,8	MR 31 180-200 L	L 4	21,4
	$\begin{aligned} & 83,3 \\ & 82,6 \end{aligned}$	$\begin{aligned} & 29236 \\ & 29484 \end{aligned}$	$\begin{aligned} & 1,4 \\ & 2 \end{aligned}$	MR 31 140-200 MR $31160-200$	L * 4	$\begin{aligned} & 20,4 \\ & 20,6 \end{aligned}$
	92,2 92 91,3	26415 26465 26662	$\begin{aligned} & 1,5 \\ & 2,24 \\ & 2,8 \end{aligned}$	MR 31 140-200 MR 31 160-200 MR 31 180-200	$\begin{array}{lll}\text { L } & 4 \\ L & 4 \\ L & 4\end{array}$	$\begin{aligned} & 18,4 \\ & 18,5 \\ & 18,6 \end{aligned}$
	106	23002	2,65	MR 31-160-200	4	16,1
	109	22841	2,12	MR 21 160-200	4	15,6
	106	23529	3	MR 21 180-200	4	16,1
	115	21651	3,35	MR 21 180-200 L	4	14,8
	119	20878	2,5	MR $21160-200 \mathrm{~L}$	4	14,3
	133 133	18678	$\begin{aligned} & 1,06 \\ & \hline 10 \end{aligned}$	MR 2l 125-200	$\begin{array}{ll} \mathrm{L} & 4 \\ \mathrm{~L} & 4 \end{array}$	$\begin{gathered} 12,8 \\ 10 \end{gathered}$
	133	18678	1,8	MR 21 140-200	4	12,8
	130	19177	2,8	MR 21 160-200	4	13,1
	129	19272	4	MR 21 180-200	4	13,2
	149	16641	1,25	MR 21 125-200	4	11,4
	149	16641	1,5	MR 21 126-200	4	11,4
	148	16810	2,12	MR 21 140-200	4	11,5
	148	16774	3,35	MR 21 160-200	4	11,5
	166	14943	1,4	MR 21 125-200	4	10,2
	166	14943	1,8	MR 21 126-200	4	10,2
	163	15230	2,5	MR 21 140-200	4	10,4
	171	14537		MR 21 160-200	4	9,94
	191	13023	1,5	MR 21 125-200	L 4	8,91
	191	13023	1,9	MR 21 126-200	4	8,91
	189	13156	2,8	MR 21 140-200	4	9
	213	11694	1,8	MR 21 125-200	4	8
	213	11694	2,24	MR 21 126-200	4	8
	208	11919	3,15	MR 21 140-200	4	8,15
	235	10570	2	MR 21 125-200	4	7,23
	235	10570	2,65	MR 21 126-200	4	7,23
	233	10650	3,15	MR 21 140-200	4	7,29
	259	9606	2,12	MR 21 125-200	4	6,57
	259	9606	2,8	MR 21 126-200	4	6,57
	272	9136	3,15	MR 21 140-200	4	6,25
	302	8223	2,5	MR 21 125-200	4	5,63
	302	8223	3,15	MR 21 126-200	4	5,63
	336	7395	2,8	MR 21 125-200	4	5,06
	336	7395	3,15	MR 21 126-200	4	5,06
	425	5847	3	MR 21 125-200	4	4
50	36,4	82417	0,95	MR 31 180-225	S 4	46,7
	40,9	73360	1,12	MR 31 180-225	4	41,5
	47	63850	0,95	MR 31 160-225	S 4	36,2
	47,2	63578	1,32	MR 31 180-225 S	S 4	36
	51,2	58688	1,4	MR 31 180-225	4	33,2
	54,3	55337	1,12	MR 31 160-225	S 4	31,3
	55,4	54159	1,4	MR 31 180-225	S 4	30,7
	62,6	47970	1,18	MR 31 160-225	4	27,2
	62,3	48208	1,7	MR 31 180-225 S	4	27,3
	$\begin{aligned} & 71,6 \\ & 71,9 \end{aligned}$	$\begin{array}{\|l\|l\|} 41959 \\ 41780 \end{array}$	$1,4$	MR 31 160-225 MR 31 180-225	$\begin{array}{ll}\text { S } & 4 \\ \text { S } & 4\end{array}$	$\begin{array}{r} 23,8 \\ 23,7 \end{array}$

$\begin{aligned} & \mathbf{P}_{1} \\ & \text { no } \\ & \\ & \text { 1) } \end{aligned}$	$\underset{\text { rom }}{\mathbf{n}_{2}}$	$\begin{gathered} M_{2} \\ \text { lb ib in } \end{gathered}$	fs	Gear reducer - Motor			i
50	79,6	37718	2,24	MR 31 180-225	S	4	21,4
	82,6	36364	1,6	MR 31 160-225	S	4	20,6
	$\begin{aligned} & 92 \\ & 91,3 \end{aligned}$	$\begin{array}{\|l\|l\|} 32641 \\ 32883 \end{array}$	$\begin{aligned} & 1,8 \\ & 2,36 \end{aligned}$	MR 3I 160-225 MR 31 180-225		4	$\begin{aligned} & 18,5 \\ & 18,6 \end{aligned}$
	106	28369	2,12	MR 31 160-225	S	4	16,1
	133 129	$\begin{array}{\|l\|l\|} 23011 \\ 23704 \end{array}$	2,12 2,8 2,	MR 21 160-225 MR $21180-225$	S	4	$\begin{aligned} & 12,8 \\ & 13,1 \end{aligned}$
	141	21812	3,35	MR $21180-225$	S	4	12,1
	146 159	$\begin{aligned} & 21033 \\ & 19320 \end{aligned}$	$\begin{aligned} & 2,5 \\ & 2,8 \end{aligned}$	MR 21 160-225 MR $21160-225$	S	4	$\begin{aligned} & 11,7 \\ & 10,7 \end{aligned}$
	158	19415	2,8	MR $21180-225$	S	4	10,8
	$\begin{aligned} & 170 \\ & 181 \end{aligned}$	$\begin{array}{\|l} 18029 \\ 16899 \end{array}$	$\begin{aligned} & 1,9 \\ & 3,35 \end{aligned}$	MR 21 140-225 MR 21 160-225		$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 9,37 \end{aligned}$
	$\begin{aligned} & 189 \\ & 182 \end{aligned}$	$\begin{array}{\|l\|l} 16226 \\ 16827 \end{array}$	$\begin{aligned} & 2,24 \\ & 4 \end{aligned}$	MR 2l 140-225 MR 2l 180-225	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 9 \\ & 9,33 \end{aligned}$
	$\begin{aligned} & 208 \\ & 209 \end{aligned}$	$\begin{aligned} & 14700 \\ & 14645 \end{aligned}$	$\begin{aligned} & 2,5 \\ & 3,75 \end{aligned}$	$\begin{aligned} & \text { MR } 2 l 140-225 \\ & \text { MR } 21160-225 \end{aligned}$	$\stackrel{s}{s}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$8,15$
	233	13135	2,5	MR 2\| 140-225	S	4	7,29
	272	11268	2,5	MR 21 140-225	S	4	6,25
	301	10181	2,5	MR 2\| 140-225	S	4	5,65
60	40,9	89221	0,95	MR 31 180-225	M	4	41,5
	$\begin{aligned} & 47,2 \\ & 51,2 \end{aligned}$	$\begin{aligned} & 77325 \\ & 71377 \end{aligned}$	$\begin{aligned} & 1,06 \\ & 1,18 \end{aligned}$	MR 3I 180-225 MR 31 180-225	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	4	$\begin{aligned} & 36 \\ & 33,2 \end{aligned}$
	55,4	65870	1,18	MR 31 180-225	M	4	30,7
	$\begin{aligned} & 62,6 \\ & 62,3 \end{aligned}$	$\begin{array}{\|l\|l\|} 58342 \\ 58631 \end{array}$	$\begin{aligned} & 1 \\ & 1,4 \end{aligned}$	MR 3I 160-225 MR 31 180-225	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 27,2 \\ & 27,3 \end{aligned}$
	$\begin{aligned} & 71,6 \\ & 71,9 \end{aligned}$	$\begin{aligned} & 51031 \\ & 50814 \end{aligned}$	$\begin{aligned} & 1,18 \\ & 1,7 \end{aligned}$	MR 3I 160-225 MR 31 180-225	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 23,8 \\ & 23,7 \end{aligned}$
	79,6	45873	1,8	MR 31 180-225	M	4	21,4
	82,6	44227	1,32	MR 31 160-225	M	4	20,6
	$\begin{aligned} & 92 \\ & 91,3 \end{aligned}$	$\begin{aligned} & 39698 \\ & 39992 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 1,9 \end{aligned}$	MR 31 160-225 MR 31 180-225	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 18,5 \\ & 18,6 \end{aligned}$
	106	34503	1,7	MR 31 160-225	M	4	16,1
	$\begin{aligned} & 133 \\ & 129 \end{aligned}$	$\begin{array}{\|l} 27986 \\ 28830 \end{array}$	$\begin{aligned} & 1,7 \\ & 2,36 \end{aligned}$	MR 2l 160-225 MR 2l 180-225	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	4	12,8 13,1
	141	26529	2,8	MR $21180-225$	M	4	12,1
	146 159	$\begin{array}{\|l\|l\|} 25581 \\ 23497 \end{array}$	2,36	MR 2l 160-225 MR 2l 160-225	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	4	11,7 10,7
	158	23613	3,15	MR $21180-225$	M	4	10,8
	$\begin{aligned} & 170 \\ & 181 \end{aligned}$	$\begin{array}{\|l} 21927 \\ 20552 \end{array}$	$\begin{aligned} & 1,5 \\ & 2,8 \end{aligned}$	MR 2l 140-225 MR 2l 160-225	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	4	$\begin{aligned} & 10 \\ & 9,37 \end{aligned}$
	$\begin{aligned} & 189 \\ & 182 \end{aligned}$	$\begin{aligned} & 19734 \\ & 20465 \end{aligned}$	$\begin{aligned} & 1,8,8 \\ & 3,15 \end{aligned}$	MR 21 140-225 MR 2l 180-225	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	4	$\begin{aligned} & 9 \\ & 9,33 \end{aligned}$
	$\begin{aligned} & 208 \\ & 209 \end{aligned}$	$\begin{array}{\|l\|l} 17879 \\ 17812 \end{array}$	$\begin{aligned} & 2,12 \\ & 3,15 \end{aligned}$	$\begin{aligned} & \text { MR } 21140-225 \\ & \text { MR } 2 \mid 160-225 \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	4	$\begin{aligned} & 8,15 \\ & 8,12 \end{aligned}$
	$\begin{aligned} & 233 \\ & 233 \end{aligned}$	15975 15988	$2,12$	$\begin{aligned} & \text { MR } 21 \text { 140-225 } \\ & \text { MR } 2 \mid 160-225 \end{aligned}$	M	4	$\begin{aligned} & 7,29 \\ & 7,29 \end{aligned}$
	272	13704	2,12	MR 2\| 140-225	M	4	6,25
	268	13896	3,15	MR 21 160-225	M	4	6,34
	301	12382	2,12	MR 21 140-225	M	4	5,65
75	51,2	87239	0,95	MR 31 180-250	M *	4	33,2
	55,4	80507	0,95	MR 31 180-250	M	4	30,7
	62,3	71660	1,12	MR 31 180-250	M	4	27,3
	71,9	62106	1,32	MR 31 180-250	M	4	23,7
	79,6	56068	1,5	MR 31 180-250	M *	4	21,4
	91,3	48879	1,6	MR 31 180-250	M *	4	18,6
	133	34205	1,4	MR 21 160-250	M	4	12,8
	129	35236	1,9	MR 21 180-250	M	4	13,1
	141	32424	2,24	MR 21 180-250	M	4	12,1

[^11]* Mounting position B5R (see table ch. 2b).

In case of ambient temperature $>86^{\circ} \mathrm{F}\left(30^{\circ} \mathrm{C}\right)$ consult us for thermal power verification.
** Consult us for thermal power verification

\mathbf{P}_{1} np	\mathbf{n}_{2} rom	$\mathbf{M}_{\mathbf{2}}$ bb in	fs	Gear reducer - Motor		i
1)						

1) Powers valid for continuous duty S1; increase possible for $S 2 \ldots$... $S 10$ (ch. 2b) in which case M_{2} increases and $f s$ decreases proportionately
2) For complete designation when ordering, see ch. 3 .

* Mounting position B5R (see table ch. 2b).
* In case of ambient temperature $>30^{\circ} \mathrm{C}$ consult us for thermal power verification ** Consult us for thermal power verification

9 - Designs, dimensions, mounting positions and lubrificant quantities

Standard design ${ }^{1)}$
Mounting position B3, B6, B7, B8, V5, V6

MR 2I, 3I 32 ... 41

PC1A

UT.C 211

Standard design ${ }^{1)}$
Mounting position B5, V1, V3

	motor B5	A	B	C	$\begin{aligned} & \text { D } \\ & \varnothing \end{aligned}$	E	$\begin{aligned} & F \\ & \varnothing \end{aligned}$	G	$\begin{gathered} \mathbf{H} \\ \text { h11 } \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \varnothing \end{aligned}$	L	$\begin{gathered} \mathbf{M} \\ \varnothing \end{gathered}$	$\begin{gathered} \mathbf{N} \\ \varnothing \\ \text { h6 } \end{gathered}$	$\begin{aligned} & \mathbf{P} \\ & \varnothing \end{aligned}$	Q	S	T	U	$\begin{aligned} & \mathrm{V} \\ & \mathrm{Z} \end{aligned}$	$\begin{aligned} & \mathbf{P}_{1} \\ & \varnothing \end{aligned}$	$\begin{aligned} & \mathbf{X} \\ & \varnothing \\ & \approx \end{aligned}$		Y \approx 2)		\mathbf{Y}_{1} 2)	\mathbf{w}	W \approx		Mass lb 2)
32	$\begin{aligned} & 63 \\ & 71^{4)} \end{aligned}$	4,53	2,09	0,79	0,63	1,18	0,37	3,86-3,46 ${ }^{\text {5 }}$	2,95	0,37	0,39	4,53	3,74	5,51	0,12	0,39	5,47	3,03	$\begin{aligned} & 1,89 \\ & 2,87 \end{aligned}$	$\begin{aligned} & 5,51 \\ & 5,51 \end{aligned}$	$\begin{array}{\|l\|} \hline 4,8 \\ 5,51 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7,28 \\ 8,86 \\ \hline \end{array}$	$\begin{gathered} 9,02 \\ \hline 11,34 \\ \hline 10 \end{gathered}$	$\begin{aligned} & 12,32 \\ & 13,9 \end{aligned}$	$\begin{aligned} & 14,06 \\ & 16,38 \\ & \hline \end{aligned}$	$\begin{aligned} & 3,98 \\ & 4,41 \end{aligned}$	$\begin{aligned} & 6,93 \\ & 7,36 \end{aligned}$	$\begin{aligned} & 17,6 \\ & 24,3 \end{aligned}$	$\begin{aligned} & 22 \\ & 30,9 \end{aligned}$
40	$\begin{aligned} & 63 \\ & 71 \\ & 80^{33} \end{aligned}$	5,2	2,48	0,75	0,748	1,57	0,37	4,45	3,54	0,37	0,47	5,12	4,331	6,3	0,14	0,39	6,14	3,62	$\begin{array}{\|l\|} \hline 2,2 \\ 3,43 \\ \hline \end{array}$	$\begin{aligned} & 5,51 \\ & 6,3 \\ & 6,3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 4,8 \\ 5,51 \\ 6,3 \\ \hline \end{array}$	$\left.\begin{array}{\|} 7,28 \\ 1,31 \\ 8,31 \\ 9,65 \end{array} \right\rvert\,$	$\begin{gathered} 9,02 \\ \hline 10,83 \\ 12,88 \end{gathered}$	$\begin{aligned} & 13,31 \\ & 14,33 \\ & 15,67 \end{aligned}$	$\begin{aligned} & 15,04 \\ & 16,85 \\ & 18,82 \end{aligned}$	$\left\|\begin{array}{l} 3,98 \\ 4,41 \\ 4,8 \end{array}\right\|$	7,52 7,95 8,35	$\begin{aligned} & 24,3 \\ & 30,9 \\ & 37,5 \end{aligned}$	$\begin{aligned} & 28,7 \\ & 37,5 \\ & 48,5 \\ & \hline \end{aligned}$
41	$\begin{aligned} & 63 \\ & 71 \\ & 80^{33} \end{aligned}$	5,2	2,48	1,34	0,945	1,42	0,37	5,04-4,45)	3,54	0,37	0,47	5,12	4,331	6,3	0,14	0,39	6,14	3,62	$\begin{aligned} & 2,2 \\ & 3,43 \end{aligned}$	$\begin{aligned} & 5,51 \\ & 6,3 \\ & 6,3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 4,8 \\ 5,51 \\ 6,3 \end{array}$	$\begin{array}{\|l\|} \hline 7,28 \\ 8,31 \\ 9,65 \end{array}$	$\begin{array}{\|c\|c} 9,02 \\ 10,83 \\ 12,8 \end{array}$	$\begin{aligned} & 13,74 \\ & 14,76 \\ & 16,1 \end{aligned}$	$\begin{aligned} & 15,47 \\ & 17,28 \\ & 19,25 \end{aligned}$	$\begin{array}{\|c\|} \hline 3,98 \\ 4,41 \\ 4,8 \end{array}$	7,52 7,95 8,35	$\begin{aligned} & 24,3 \\ & 30,9 \\ & 37,5 \end{aligned}$	$\begin{aligned} & 28,7 \\ & 37,5 \\ & 48,5 \\ & \hline \end{aligned}$

1) See ch. 3 for motor design.
2) Mounting position B5A (see ch. 2b), brake motor F0 80D not possible.
3) Mounting position B5R (see ch. 2b).
4) Dimensions of shaft end shoulder and flange surface respectively.
5) For size $51 Y_{1}$ is $-0,32$ in.
6) For motor shaft \mathbf{H} is $-0,59$ in, $\mathbf{H}_{0}+0,59$ in.
7) For motor shaft \mathbf{H} is $-0,32$ in, $\mathbf{H}_{0}+0,32$ in.
8) For motor shaft \mathbf{H} is $-1,14$ in, $\mathbf{H}_{0}+1,14 \mathrm{in}$.
9) Two of the motor flange holes are slotted (see ch. 2b).

Mounting positions and grease quantities [gal]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PC1A \& B3 \& \[
\begin{gathered}
\text { B6 } \\
\text { © }
\end{gathered}
\] \& B7 \& \[
\begin{gathered}
\text { B8 } \\
\end{gathered}
\] \& \& \& \begin{tabular}{l}
Size \\
32 \\
40,41
\end{tabular} \& B3,
B7, B8
\[
0,31
\]
\[
0,57
\] \& \[
\mathrm{v5}, \mathrm{v6}
\]
\[
\begin{aligned}
\& 0,55 \\
\& 1,04
\end{aligned}
\] \\
\hline F\%1A \& B5 \& \& \& \& \& \& \({ }_{40,41}^{32}\) \& B5
\[
\begin{aligned}
\& 0,22 \\
\& 0,42
\end{aligned}
\] \& v1, V3

0,4
0,77

\hline
\end{tabular}

[^12]

Standard design ${ }^{11}$
Mounting position B3，B6，B7，B8，V5，V6 UC2A

See notes on page 41.
Mounting positions and oil quantities［gal］

B3	B6	B7	B8			Size	B3	B6，B7	B8，V6	V5
隹配	，	成事成				$\begin{array}{lll} 50, & 51 \\ 63, & 64 \\ 80 & 81 \end{array}$	$\begin{aligned} & 0,21 \\ & 0,42 \\ & 0,82 \end{aligned}$	$\begin{aligned} & 0,29 \\ & 0,58 \\ & 1,1 \end{aligned}$	$\begin{aligned} & 0,29 \\ & 0,58 \\ & 1,1 \end{aligned}$	$\begin{aligned} & 0,37 \\ & 0,74 \\ & 1,50 \end{aligned}$
						$\begin{aligned} & 100,101 \\ & 125,126 \\ & 140 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 2,7 \\ & 3,1 \end{aligned}$	$\begin{aligned} & 1,9 \\ & 3,4 \\ & 3,9 \end{aligned}$	$\begin{aligned} & 2,1 \\ & 3,9 \\ & 4,4 \end{aligned}$	2,6 4,8 5,5
UT．C629						$\begin{aligned} & 160 \\ & 180 \end{aligned}$	$\begin{aligned} & 5,2 \\ & 6,1 \end{aligned}$	$\begin{aligned} & 6,6 \\ & 7,7 \end{aligned}$	$\begin{aligned} & 7,4 \\ & 8,5 \end{aligned}$	$\begin{array}{r} 9,2 \\ 10,6 \end{array}$

Unless otherwise stated，geamotors are supplied in mounting position B3 which，being standard，is omitted from the designation．

10 - Combined gear reducer and gearmotor units

Nominal torques for final gear reducer

$\begin{gathered} M_{\mathrm{N} 2}[\mathrm{l} \mathrm{~b} \mathrm{in}] \\ \text { for } n_{2} \leqslant \mathbf{1 1 , 2} \mathrm{rpm}^{3)} \end{gathered}$	η final	i final	Final gear reducer	+	Initial gear reducer or gearmotor
3000	0,94	30	MR 3I 63-80B 4 ... B5A/46,7 ${ }^{\text {1) }}$	+	R 21 o / or MR 21, 31 40
4000		30	MR 3I 64-80B 4 ... B5A/46, ${ }^{\text {¹) }}$	+	R 21 o / or MR 21, 31 40
6000		32,8	MR 31 80-80C 4 ... B5A/42,7 ${ }^{\text {1) }}$	+	R 21 o / or MR 21, 31 40
8000		49,8	MR 31 81-80C 4 ... B5A/28,1 ${ }^{\text {1) }}$	+	R 21 o / or MR 21, 31 40
11800		32	MR 31 100-90LC 4 ... B5/43,8	+	R 21, 31 o / or MR 21, 31 50 ${ }^{\text {2) }}$
16000		53,1	MR 31 101-90LC 4 ... B5/26,4	+	R 21, 31 o / or MR 21, 31 50 ${ }^{\text {2) }}$
23600		34,1	MR 3I 125-112M 4 ... B5/41,1	+	R 2I, 3I o / or MR 2I, 31 63 ${ }^{\text {2) }}$
31500		50,2	MR 3I 126-112M 4 ... B5/27,9	+	R 21, 3I o / or MR 2I, 31 63 ${ }^{\text {2) }}$
45000		55,7	MR 3I 140-112MC 4 ... B5/25,1	+	R 2I, 31 o / or MR 21, 31 $63{ }^{\text {2) }}$
63000		49,7	MR 3I 160-132MB 4 ... B5/28,2	+	R 21, 31 o / or MR 21, 31 80 ${ }^{\text {2 }}$
85000		57,1	MR 3I 180-132MB 4 ... B5/24,5	+	R 21, 31 o / or MR 21, 31 80 ${ }^{\text {2) }}$

For initial gear reducer or gearmotor performance data see ch. 6, 8 .

1) Final gearmotor has a 6,30 in motor mounting flange.
2) Gear reducer in design «Oversized B5 flange» (see ch. 15); moreover, size 63 has the low speed shaft reduced to 1,10 in: "Oversized B5 flange - $\varnothing 1,10$ ":
3) Provided that fs is always $\geqslant 0,8$, it can be reduced by $\mathbf{1 , 0 6}$ for $n_{2}=2,8 \div 0,71 \mathrm{rpm}$, by $\mathbf{1 , 1 2}$ for $n_{2} \leqslant 0,71 \mathrm{~min}^{-1}$.

11-Radial loads ${ }^{1)} \mathbf{F}_{\mathrm{r} 1}[\mathrm{lb}]$ on high speed shaft end OHL

Radial loads generated on the shaft end by a drive connecting gear reducer and motor must be less than or equal to those given in the relevant table.
The radial load $F_{\mathrm{r} 1}$ given by the following formula refers to most common drives:
$F_{r 1}=\frac{189090 \cdot P_{1}}{d \cdot n_{1}}$
[lb] for timing belt drive
$F_{\mathrm{r} 1}=\frac{345050 \cdot P_{1}}{d \cdot n_{1}}$
[lb] for V-belt drive
where: P_{1} [hp] is power required at the input side of the gear reducer, $n_{1}[r p m]$ is the speed, $d[\mathrm{in}]$ is the pitch diameter.

Radial loads given in the table are valid for overhung loads on centre line of high speed shaft end, i.e. operating at a distance of 0,5 e ($\mathrm{e}=$ shaft end length) from the shoulder. If they operate at 0,315 $\cdot \mathrm{e}$ multiply by 1,25 ; if they operate at 0,8 e multiply by 0,8 .
IMPORTANT: tabulated values for radial load $F_{r 1}$ can increase considerably in certain instances (direction of rotation, angular position of load, etc.). Consult us if need be.

$\begin{gathered} \mathbf{n}_{1} \\ \mathrm{rpm} \\ \hline \end{gathered}$	Gear reducer size																
	32	40		50	50	63		63	80		80	100, 101		\|125, 126, 140		160, 180	
			$\begin{gathered} \mathbf{5 1} \\ i_{N} \leqslant 12,5 \end{gathered}$	$\begin{gathered} \mathbf{5 1} \\ i_{N} \geqslant 16 \end{gathered}$	51	$\begin{gathered} \mathbf{6 4} \\ i_{N} \leqslant 12,5 \end{gathered}$	$\begin{gathered} \mathbf{6 4} \\ i_{N} \geqslant 16 \end{gathered}$	64	$\begin{gathered} \mathbf{8 1} \\ i_{N} \leqslant 12,5 \end{gathered}$	$\begin{gathered} \mathbf{8 1} \\ i_{N} \geqslant 16 \end{gathered}$	81						
	R 21	R 21	R 21	R 21	R 31	R 21	R 21	R 31	R 21	R 21	R 31	R 21	R 31	R21	R 31	R 21	R 31
1800	24	36	90	56	36	140	90	56	224	140	90	355	140	560	355	900	560
1120	27	40	100	63	40	160	100	63	250	160	100	400	160	630	400	1000	630
710	32	48	118	75	48	190	118	75	300	190	118	475	190	750	475	1180	750
355	40	60	150	95	60	236	150	95	375	236	150	600	236	950	600	1500	950

1) An axial load of up to 0,2 times the value in the table is permissible, simultaneously with the radial load. If exceeded consult us.

12-Radial loads $\mathrm{F}_{\mathrm{r} 2}[\mathrm{lb}]$ on low speed shaft end OHL

Axial loads $F_{\mathrm{a} 2}$

Permissible $F_{\mathrm{a} 2}$ is shown in the column where direction of rotation of low speed shaft (black or white arrow) and direction of the axial force (solid or broken arrow) correspond to those of the gear reducer in question.
Wherever possible, choose the load conditions corresponding to the column with highest admissible values.

Radial loads $F_{\text {r }}$

Radial loads generated on the shaft end by a drive connecting gear reducer and machine must be less than or equal to those given in the relevant table.
Normally, radial loads on low speed shaft ends are considerable: in fact there is a tendency to connect the gear reducer to the machine by means of a transmission with high transmission ratio (economizing on the gear reducer) and with small diameters (economizing on the drive, and for requirements dictated by overall dimensions).
Bearing life and wear (which also affect gears unfavourably) and low speed shaft strength, clearly impose limits on permissible radial load. The high value which radial load may take on, and the importance of not exceeding permissible values, make it necessary to take full advantage of the gear reducer's possibilities.
Permissible radial loads given in the table are therefore based on: the product of speed n_{2} [rpm] multiplied by bearing life L_{n} [h] required, the direction of rotation, the angular position $\varphi\left[{ }^{\circ}\right]$ of the load and torque $M_{2}[\mathrm{lb}]$ required.
Radial loads given in the table are valid for overhung loads on centre line of low speed shaft end, i.e. operating at a distance of 0,5 - E ($E=$ shaft end length) from the shoulder. If operating at $0,315 \cdot E$ multiply by 1,25 ; if operating at $0,8 \cdot$ E multiply by 0,8 .
Radial load $F_{r 2}$ for most common drives has the following value and angular position
$F_{\mathrm{r} 2}=\frac{126060 \cdot P_{2}}{d \cdot n_{2}}$
[lb] for chain drive (lifting in general); for timing belt drive replace 126060 with 189090
$F_{\mathrm{r} 2}=\frac{315050 \cdot P_{2}}{d \cdot n_{2}}$
[lb] for V-belt drive
$F_{\mathrm{r} 2}=\frac{134112 \cdot P_{2}}{d \cdot n_{2}}$
[lb] for spur gear pair drive
$F_{\mathrm{r} 2}=\frac{447546 \cdot P_{2}}{d \cdot n_{2}}$
[lb] for friction wheel drive (rubber-on-metal)
where: $P_{2}[\mathrm{hp}]$ is power required at the output side of the gear reducer, $n_{2}[\mathrm{rpm}]$ is the speed, d [in] is the pitch diameter.

12-Radial loads $F_{\mathrm{r} 2}$ [daN] or axial loads $F_{\mathrm{a} 2}[\mathrm{daN}]$ on low speed shaft end OHL

Train of gears	i_{N}	Gear reducer size $F_{12}{ }^{11}[\mathrm{~b}]$															
		32	40	41	50	51	63	64	80	81	100	101	125	126	140	160	180
21	4	-	-		315	315	265	250	335	1500	280	2240	2360	1500	-	-	-
	5	-	-	300	315	315	265	250	335	1500	280	2240	2360	1500			
	5,6			335	315	315	375	400	500	1800	600	2650	2360	1900	2650		3150
	6,3	212	212	335	315	315	375	475	500	1800	850	2800	2360	1900	2650	3150	3150
	7,1			355	315	315	500	475	670	1900	850	2800	2360	1900	2650	3150	3150
	8	236	236	355	315	315	236	475	670	1900	170	1700	2360	1900	2650	3150	3150
	9			355	315	425	236	475	530	2000	170	2500	2360	1900	2650	3150	3150
	10	280	265	355	400	560	335	600	224	2000	335	2500	2800	2360	2650	3550	4250
	11,2			400	400	560	335	600	400	2000	335	3000	2800	2360	3350	3550	4250
	12,5	280	450	400	400	560	335	600	600	2240	670	3350	2800	2360	3750	3550	4250
	14			560	800	600	475	750	600	2240	670	3350	3350	3000	3750	3550	5000
	16	-	450	560	800	670	630	950	600	2240	1000	3550	3350	3000	3750	4750	6000
	18	-		-	800	670	630	950	800	2240	1000	3550	4500	3350	-	5600	6000
	20	-	450	-	800	670	630	670	1060	2240	1000	3550	4500	3350	4500	5600	6000
	25	-	450	-	800	950	1180	1180	1800	2240	1800	3550	4500	-	-	-	-
	31,5	-	450	-	800		1180	-	1800		1800				-		-
	40	-	450	-		-	630										
31	16	-	-	-	800	630	630	670	800	2240	1000	3550	3750	2800		4250	
	18	-	-	-	800	630	630	670	800	2240	1000	3550	4500	2800	3550	4250	4500
	20	-	-	560	800	630	1180	900	800	2240	1400	3550	4500	2800	3550	4250	4500
	22,4	-	-	560	800	950	1180	900	1060	2240	1400	3550	4500	3350	4250	5300	5600
	25	-	-	560	800	950	1180	900	1060	2240	1800	3550	4500	3750	5000	5300	6700
	28	-	-	560	800	950	1180	1500	1800	2240	2800	3550	4500	3750	5000	6300	6700
	31,5	-		560	800	950	1180	1500	1800	2240	2800	3550	4500	5600	7100	7100	8000
	35,5	-	-	560	800	950	1180	1500	1800	2240	2800	3550	4500	5600	7100	7100	9500
	40	-	-	560	800	950	1180	1500	1800	2240	2800	3550	4500	5600	7100	9000	11200
	45	-		560	800	950	1180	1500	1800	2240	2800	3550	4500	5600	7100	9000	11200
	50	-	-	560	800	950	1180	1500	1800	2240	2800	3550	4500	5600	7100	9000	11200
	56	-	-	560	800	950	1180	1500	1800	2240	2800	3550	4500	5600	7100	9000	11200
	63	-	-	560	800	950	1180	1500	1800	2240	2800	3550	4500	5600	7100	9000	11200
	71	-		560	800	950						-	-		-	-	
	80	-	-	-	800	950	1180	1500	1800	2240	2800	3550	4500	5600	7100	9000	11200
	90	-			800	950	-										
	100	-	-		800	950	1180	1500	1800	2240	2800	3550	4500	5600	7100	9000	11200
	112				800	950											
	125	-	-	-	800	950	1180	1500	1800	2240	2800	3550	4500	5600	5600	9000	11200
	140	-	-	-	800	-	-	-									-
	160	-	-	-	800	-	1180	-	1800	2240	2800	3550	4500	5600	5600	-	-
	200	-	-	-				-	1800		2800		4500			-	-

1) An axial load of up to 0,2 times the value in the table is permissible. If exceeded consult us
2) It's not avaible ICI train of gears.

13-Structural and operational details

Efficiency η :

- gear reducer with 2 gear pairs (21) 0,96, with 3 gear pairs (3I) 0,94; for $M_{2} \ll M_{N 2}, \eta$ could considerably decrease; consult us.

Overloads

Where a gear reducer is subjected to high static and dynamic overloads, the need arises for verifying that such overloads will always remain lower than $\mathbf{2} \cdot \mathbf{M}_{\mathrm{N} 2}$ (see ch. 6 ; see ch. 8 where $M_{\mathrm{N} 2}=M_{2} \cdot f s$).
Overloads are normally generated when one has:

- starting on full load (especially for high inertias and low transmission ratios), braking, shocks;
- gear reducers in which the low speed shaft becomes driving member due to driven machine inertia;
- applied power higher than that required; other static or dynamic causes.
The following general observations on overloads are accompanied by some formulae for carrying out evaluations in certain typical instances
Where no evaluation is possible, install safety devices which will keep values within 2- $\mathbf{M}_{\mathrm{N} 2}$

Starting torque

When starting on full load (especially for high inertias and low transmission ratios) verify that $\mathbf{2} \cdot \mathbf{M}_{\mathrm{N} 2}$ is equal to or greater than starting torque, by using the following formula:

$$
M_{2} \text { start }=\left(\frac{M \text { start }}{M_{N}} \cdot M_{2} \text { available }-M_{2} \text { required }\right) \frac{J}{J+J_{0}}+M_{2} \text { required }
$$

where

M_{2} required is torque absorbed by the machine through work and frictions
M_{2} available is output torque due to the motor's nominal power
J_{0} is the moment of inertia (of mass) of the motor
J is the external moment of inertia (of mass) in $\mathrm{lb}^{\mathrm{lt}}{ }^{2}$ (gear reducers, couplings, driven machine) referred to the motor shaft
for other symbols see ch. 2 b
NOTE: when seeking to verify that starting torque is sufficiently high for starting, take into account starting friction, if any, in evaluating M_{2} required.

Stopping machines with high kinetic energy (high moments of inertia combined with high speeds) with brake motor
Verify braking stress by means of the formula:

$$
\left(\frac{M f}{\eta} \cdot i+M_{2} \text { required }\right) \frac{J}{J+J_{0}}-M_{2} \text { required } \leqslant 2 \cdot M_{\mathrm{N} 2}
$$

where:
$M f$ is the braking torque setting (see table in ch. 2b); for other symbols see above and ch. 1.

Operation with brake motor

Starting time ta and revolutions of motor φa_{1}
$t \mathrm{a}=\frac{\left(J_{0}+J\right) \cdot n_{1}}{25,605\left(M \text { start }-\frac{M_{2} \text { required }}{i}\right)}[\mathrm{s}] ;$

$$
\varphi \mathrm{a}_{1}=\frac{t \mathrm{a} \cdot n_{1}}{19,1}[\mathrm{rad}]
$$

Braking time $t f$ and revolutions of motor $\varphi^{f_{1}}$
$t f=\frac{\left(J_{0}+J\right) \cdot n_{1}}{25,605\left(M f+\frac{M_{2} \text { required }}{i}\right)}[\mathrm{s}] ;$
$\varphi \mathrm{f}_{1}=\frac{t \mathrm{f} \cdot n_{1}}{19,1}[\mathrm{rad}]$

Where:
M start $[\mathrm{lb} \mathrm{in}]$ is motor starting torque $\left(\frac{63025 \cdot P_{1}}{n_{1}} \cdot \frac{M \text { start }}{M_{\mathrm{N}}}\right)$ (see ch. 2b);
$\mathrm{Mf}[\mathrm{lb} \mathrm{in}]$ is the braking torque setting of the motor (see ch. 2 b);
for other symbols see above and ch. 1.
Assuming a regular air-gap and ambient humidity, and utilizing suitable electrical equipment, repetition of the braking action, as affected by variation in temperature of the brake and by the state of wear of friction surface, is approx $\pm 0,1 \cdot \varphi f_{1}$.

Low speed shaft angular backlash and torsional stiff-

 nessA rough guide for the angular backlash (high speed shaft being locked) is given in the table. Values vary according to temperature and transmission ratio
Also the approx. values for low speed shaft torsional stiffness - high speed shaft being locked - are given in the table according to the train of gears.
On request it is possible to supply gear reducers with reduced backlash lower than or equal to the minimum values stated on the table.

1) At the distance of 1 m from the low speed shaft centre, angular backlash in mm is obtained by multiplying the value stated in the table by 1000 (1 rad = 3438).

Gear reducer size	Angular backlash [rad] ${ }^{1)}$		Torsional stiffness [in-lb/']	
	min	max	R, MR 2I	R, MR 3I
$\mathbf{3 2}$	0,0050	0,0100	14,2	8
$\mathbf{4 0}$	0,0045	0,0090	27,9	15,9
$\mathbf{4 1}$	0,0045	0,0090	31,4	17,7
$\mathbf{5 0}$	0,0036	0,0071	66	38,1
$\mathbf{5 1}$	0,0036	0,0071	75	42,5
$\mathbf{6 3}$	0,0032	0,0063	133	75
$\mathbf{6 4}$	0,0032	0,0063	150	84
$\mathbf{8 0}$	0,0028	0,0056	266	150
$\mathbf{8 1}$	0,0028	0,0056	297	168

Gear reducers input face

The input face of gear reducers (size $\geqslant 50$) has a flange with tapped holes and «hole» centering for eventual fitting of motor support, etc The use of threaded holes closed with dowel, if any, requires the removal of dowel (avoiding eventual oil loss) and the readjustment of sealant.

Gear reducer size	\mathbf{F}_{1}	\mathbf{g}	\mathbf{M}_{1} \varnothing	\mathbf{N}_{1} \varnothing H 7	\mathbf{P}_{1} \varnothing	\mathbf{Q}_{1}
$\mathbf{5 0 ,} \mathbf{5 1}$	M 8	0,37	$4,53^{2)}$	3,74	5,51	0,16
$\mathbf{6 3 ,} \mathbf{6 4}$	M 8	0,39	5,12	4,33	6,3	0,18
$\mathbf{8 0 , \mathbf { 8 1 }}$	M 10	0,41	6,5	5,12	7,87	0,18
$\mathbf{1 0 0 , 1 0 1}$	M 12	0,43	8,46	7,09	9,84	0,2
$\mathbf{1 2 5 , 1 2 6 , 1 4 0}$	M 12	$0,55^{3)}$	10,43	9,06	11,81	0,2
$\mathbf{1 6 0 , 1 8 0}$	M 16	$0,75^{3)}$	13,78	11,81	15,75	0,24

1) Working length of thread $0,041 \mathbf{F}_{1}, 0,059 \mathbf{F}_{1}$ for $R 21125 \ldots 180$
2) The two upper holes are on a diameter \mathbf{M}_{1} of 5,12 in: consult us.
3) For R $31 \mathbf{g}$ dimension is $-0,157$ (sizes $125 \ldots 140$), $-0,236$ (sizes 160 and 180)

ח. $2 F_{1}$
(R 21 125...140)

Sez. A-A

13-Structural and operational details

Shaft end

Shaft end					Parallel key	Keyway		
$\begin{aligned} & \text { D } \\ & \varnothing \\ & \hline \end{aligned}$		$E^{1)}$		$\begin{aligned} & \mathbf{d} \\ & \varnothing \end{aligned}$	$\mathbf{b} \times \mathbf{h} \times \mathbf{l}^{1)}$	b	t	\mathbf{t}_{1}
0,433	6	0,91	$(0,79)$	M 5	0,157 $\times 0,157 \times 0,709(0,472)$	0,157	0,098	0,5
0,551	6	1,18		M 6	$0,197 \times 0,197 \times 0,984$	0,197	0,118	0,638
0,63	6	1,18		M 6	$0,197 \times 0,197 \times 0,984$	0,197	0,118	0,717
0,748	j 6	1,57		M 6	$0,236 \times 0,236 \times 1,417$	0,236	0,138	0,854
0,945	j 6	1,97	$(1,42)$	M 8	$0,315 \times 0,276 \times 1,772(0,984)$	0,315	0,157	1,071
1,102	j 6	2,36	$(1,65)$	M 8	$0,315 \times 0,276 \times 1,772(1,417)$	0,315	0,157	1,228
1,26	k 6	3,15	$(2,28)$	M 10	$0,394 \times 0,315 \times 2,756(1,969)$	0,394	0,197	1,39
1,496	k 6	3,15	$(2,28)$	M 10	$0,394 \times 0,315 \times 2,756(1,969)$	0,394	0,197	1,626
1,654	k 6	4,33		M 12	$0,472 \times 0,315 \times 3,543$	0,472	0,197	1,783
1,772	k 6	3,23		M 12	$0,551 \times 0,354 \times 2,756$	0,551	0,217	2,039
1,89	k 6	3,23	$(3,15)$	M 12	$0,551 \times 0,354 \times 2,756$	0,551	0,217	2,039
2,165	m 6	3,23		M 12	$0,63 \times 0,394 \times 2,756$	0,63	0,236	2,354
2,362	m6	4,13		M 16	$0,709 \times 0,433 \times 3,543$	0,709	0,276	2,535
2,756	m 6	4,13		M 16	$0,787 \times 0,472 \times 3,543$	0,787	0,295	2,949
3,15	m 6	5,12		M 20	$0,866 \times 0,551 \times 4,331$	0,866	0,354	3,362
3,543	m6	5,12		M 20	0,984 $\times 0,551 \times 4,331$	0,984	0,354	3,756
3,937	m 6	6,5		M 24	$1,102 \times 0,63 \times 5,512$	1,102	0,394	4,189

Plug position

80,81

1) I valori tra parentesi sono relativi all'estremità d'albero corta. 1) Values in brackets are for short shaft end.

Fixing bolt dimensions for gear reducer feet

$\begin{gathered} \text { Gear reducer } \\ \text { size } \end{gathered}$	UNI 5737-88 ${ }^{11}$ (I max)	
50, 51	M 10×30	M 10×35
63, 64	M 12×35	M 12×40
80, 81	M 14×40	M 14×50
100, 101	M 16×50	M 16×60
125, 126, 140	M 20×60	M 20×70
160, 180	M 24×70	M 24×90

nut seating

14 - Installation and maintenance

General

Be sure that the structure on which gear reducer or gearmotor is fitted is plane, levelled and sufficiently dimensioned in order to assure fitting stability and vibration absence, keeping in mind all transmitted forces due to the masses, to the torque, to the radial and axial loads.
Position the gear reducer or gearmotor so as to allow a free passage of air for cooling both gear reducer and motor (especially at motor fan side).
Avoid: any obstruction to the air-flow; heat sources near the gear reducer that might affect the temperature of cooling-air and of gear reducer for radiation; insufficient air recycle or any other factor hindering the steady dissipation of heat.
Mount the gear reducer so as not to receive vibrations.
When external loads are present use pins or locking blocks, if necessary.
When fitting gear reducer and machine and/or gear reducer and eventual flange B5 it is recommended to use locking adhesives such as LOCTITE on the fastening screws (also on flange mating surfaces).
For outdoor installation or in a hostile environment protect the gear reducer or gearmotor with anticorrosion paint. Added protection may be afforded by water-repellent grease (especially around the rotary seating of seal rings and the accessible zones of shaft end).
Gear reducers and gearmotors should be protected wherever possible, and by whatever appropriate means, from solar radiation and extremes of weather; weather protection becomes essential when high or low speed shafts are vertically disposed, or where the motor is installed vertical with fan uppermost.
For ambient temperatures greater than $124{ }^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ or less than $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$, consult us.
Before wiring-up the gearmotor, make sure that motor voltage corresponds to input voltage. If the direction of rotation is not as desired, invert two phases at the terminals.
Star-delta starting should be adopted for starting on no load (or with a very small load) and/or when the necessity is for smooth starts, Iow starting current and limited stresses.
If overloads are imposed for long periods of time, or if shocks or danger of jamming are envisaged, then motor-protections, electronic torque limiters, fluid couplings, safety couplings, control units or other suitable devices should be fitted.
Where duty cycles involve a high number of starts on-load, it is advisable to utilize thermal probes (fitted on the wiring) for motor protection; a thermal overload relay is unsuitable since its threshold must be set higher than the motor's nominal current rating.
Use varistors to limit voltage peaks due to contactors.
Warning! Bearing life, good shaft and coupling running depend on alignment precision between the shafts. Carefully align the gear reducer with the motor and the driven machine (with the aid of shims if need be), interposing flexible couplings whenever possible.
Whenever a leakage of lubricant could cause heavy damages, increase the frequency of inspections and/or envisage appropriate control devices (e.g.: remote oil level gauge, lubricant for food industry, etc.).
In polluting surroundings, take suitable precautions against lubricant contamination through seal rings or other.
Gear reducer or gearmotor should not be put into service before it has been incorporated on a machine which is conform to 98/37/EEC directive.
For brake or non-standard motors, consult us for specific information.

Fitting of components to shaft ends

It is recommended that the bore of parts keyed to shaft ends is machined to H 7 tolerance; for low speed shaft ends, tolerance must be K7 when load is not uniform and light. Other details are given in the «Shaft end» table (ch. 15).
Before mounting, clean mating surfaces thoroughly and lubricate against seizure and fretting corrosion.
Installing and removal operations should be carried out with pullers and jacking screws using the tapped hole at the shaft butt-end; for $\mathrm{H} 7 / \mathrm{m} 6$ and $\mathrm{K} 7 / \mathrm{j} 6$ fits it is advisable that the part to be keyed is preheated to a temperature of $176 \div 212^{\circ} \mathrm{F}\left(80 \div 100^{\circ} \mathrm{C}\right)$.

Lubrication

Gear pairs and bearings are oil-bath or splash lubricated excluding sizes $32 \ldots 41$ which are grease lubricated.
Sizes 32 ... 41: gear reducers are supplied filled with synthetic grease (SHELL Tivela Compound A, IP Telesia Compound A, MOBIL Glygoyle Grease 00), providing lubrication «for life»- assuming pol-Iution-free surroundings.
Sizes $50 \ldots$ 81: gear reducers are supplied filled with synthetic oil (KLUBER Klübersynth GH 6-220, MOBIL Glygoyle 30) providing lubrication «for life» - assuming pollution-free surroundings. Ambient temperature range $32 \div 104^{\circ} \mathrm{F}\left(0 \div 40^{\circ} \mathrm{C}\right)$ with peaks of $-4^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ and $+122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$.
Important: verify mounting position keeping in mind that if gear reducer is installed in a mounting position which differs from the one indicated on the name plate, it could require the addition of the difference between the two quantities of lubricant given in ch. 7 and 9, by way of the casing filler hole.
Sizes 100 ... 180: gear reducers are supplied without oil; before putting into service, fill to the specified level with mineral oil (AGIP Blasia, ARAL Degol BG, BP-Energol GR-XP, ESSO Spartan EP, IP Mellana oil, MOBIL Mobilgear 600, SHELL Omala, TEXACO Meropa, TOTAL Carter EP) having the ISO viscosity grade given in the table.
When it is required to increase oil change interval («long life»), the ambient temperature range, and/or reduce oil temperature, use synthetic oil (with polyglycol basis: KLÜBER Klübersynth GH6 ..., MOBIL Glygoyle, SHELL Tivela S oil...; with polyalphaolefines basis, always suggested: AGIP Blasia SX, CASTROL Tribol 1510, ELF Reductelf SYNTHESE, ESSO Spartan SEP, KLÜBER Klübersynth EG4, MOBIL SHC) having ISO viscosity grade as indicated in the table.
ISO viscosity grade
Mean kinematic viscosity [cSt] at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$.

Speed n_{2} $r p m$	$\left.\begin{array}{c}\left.\text { Ambient temperature }{ }^{1}\right) \\ \text { mineral oil }\end{array}{ }^{\circ} \mathrm{F}\right]\left({ }^{\circ} \mathrm{C}\right)$		
synthetic oil			
$32(0) \div 20$	$50(10) \div 104(40)$	$32(0) \div 104(40)$	
$>\mathbf{2 2 4}$	150	150	150
$\mathbf{2 2 4} \div \mathbf{2 2 , 4}$	150	220	220
$\mathbf{2 2 , 4} \div \mathbf{5 , 6}$	220	320	320
$<\mathbf{5 , 6}$	320	460	460

1) Peaks of $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$ above and $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)\left(68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)\right.$ for synthetic oil) below the ambient temperature range are acceptable.

An overall guide to oil-change interval is given in the table, and assumes pollution-free surroundings. Where heavy overloads are present, halve the values.

Oil	Oil-change interval [h]	
temperature [$\left.{ }^{\circ} \mathrm{F}\right]\left({ }^{\circ} \mathrm{C}\right)$	mineral oil	synthetic oil
$\mathbf{1 4 9 (\mathbf { 6 5) }}$	8000	25000
$\mathbf{1 4 9 (\mathbf { 6 5) } \div \mathbf { 1 7 6 } \mathbf { (8 0) }}$	4000	18000
$\mathbf{1 7 6} \mathbf{(8 0)} \div \mathbf{2 0 3} \mathbf{(9 5)}$	2000	12500

14 - Installation and maintenance

Combined gear reducer and gearmotor units: lubrication remains independent, thus data relative to each single gear reducer hold good.
Seal rings: duration depends on several factors such as dragging speed, temperature, ambient conditions, etc.; as a rough guide; it can vary from 3150 to 12500 h.
Warning: for gear reducers sizes $100 \ldots 180$, before unscrewing the filler plug with valve (symbol --) wait until the unit has cooled and then open with caution.

Motor replacement

As all gearmotors are fitted with standard motors, motor replacement in case of breakdown is extremely easy. Simply observe the following instructions:

- ensure that the mating surfaces are machined under accuracy rating (UNEL 13501-69; DIN 42955);
- clean surfaces to be fitted, thoroughly;
- check, and if necessary, lower the parallel key so as to leave a clearance of 0,00394 $\div 0,0079$ in between its tip and the bottom of the keyway of the hole; when shaft keyway is without end, lock the key with a pin;
- check that the fit-tolerance of bore-and-shaft end (standard locking) is $K 6 / j 6$ for $D \leqslant 281,102 \mathrm{in}, \mathrm{J} 6 / \mathrm{k} 6$ for $D \geqslant 1,5$ in; the length of the parallel key is to be at least 0,9 the face width of the pinion;
- ensure that motor bearings and overhangs (dimension S) are as shown in the table;

Motor size	Min. dynamic load capacity [daN]		Max dimension 's'
	Front	Rear	inch.
$\mathbf{6 3}$	1012	335	0,6
$\mathbf{7 1}$	1416	1068	0,71
$\mathbf{8 0}$	2023	1506	0,79
$\mathbf{9 0}$	2967	2248	0,89
$\mathbf{1 0 0}$	4496	3372	0,98
$\mathbf{1 1 2}$	5620	4271	1,1
$\mathbf{1 3 2}$	7981	5957	1,32
$\mathbf{1 6 0}$	10678	7531	1,48
$\mathbf{1 8 0}$	14163	10116	1,57
$\mathbf{2 0 0}$	17985	12589	1,77
$\mathbf{2 2 5}$	22481	15962	1,87
$\mathbf{2 5 0}$	$\mathbf{2 8 1 0 1}$	20233	2,09
$\mathbf{2 8 0}$	35970	25179	2,2

- mount the spacer (with rubber cement; check that between keyway and motor shaft shoulder there is a grounded cylindrical part of at least 0,06 in) and the pinion (the latter to be preheated to a temperature of $176 \div 212^{\circ} \mathrm{F}\left(80 \div 100^{\circ}\right)$ on the motor, locking the assembly with either a bolt to the shaft butt-end, or a stop collar;
- lubricate the pinion toothing, and the sealing ring and its rotary seating with grease, assembling with extreme care.

Systems of motor-gear reducer mounting

The strength and shape of casing offer advantageous systems of motor-gear reducer mounting: gearmotor with belt drive, mechanic or hydraulic coupling.

15 - Accessories and non-standard designs

Strengthened high speed shaft bearings

Gear reducer R 21 sizes 50, 63, 80 and sizes 51, 64,81 with $i_{N} \geqslant 16$ and R 31 sizes 63 ... 101 can be supplied with cylindrical roller bearings on high speed shaft so as to allow high radial loads, values \mathbf{x} $\mathbf{1 , 6}$ (ch. 11); this design is standard for all remaining gear reducers, which present cylindrical roller or taper roller bearings as a standard. Supplementary description when ordering by designation: strengthened high speed shaft bearings

Non-standard low speed shaft end

The gear reducers and gearmotors size 40 ... 101 can be supplied with non-standard low speed shaft end; dimensions as per following table.

Gear reducer	\mathbf{D} \varnothing	\mathbf{E}	\mathbf{d} \varnothing	Linguetta $\mathbf{b x i z e}$
$\mathbf{4 0}$	$0,787 \mathrm{g6}$	1,57	M 6	$0,236 \times 0,236 \times 1,417$
$\mathbf{4 1}$	$0,787 \mathrm{j} 6$	1,42	M 6	$0,236 \times 0,236 \times 0,984$
$\mathbf{5 0}$	$0,984 \mathrm{j} 6$	1,97	M 8	$0,315 \times 0,275 \times 1,771$
$\mathbf{5 1}$	$0,984 \mathrm{j} 6$	1,65	M 8	$0,315 \times 0,275 \times 1,471$
$\mathbf{6 3 , 6 4}$	$1,181 \mathrm{k6}$	2,28	M 10	$0,315 \times 0,275 \times 1,771$
$\mathbf{6 3}$	$1,377 \mathrm{g6}$	2,28	M 10	$0,393 \times 0,315 \times 1,968$
$\mathbf{6 4}$	$1,377 \mathrm{k6}$	2,28	M 10	$0,393 \times 0,315 \times 1,968$
$\mathbf{8 0}$	$1,574 \mathrm{g6}$	3,15	M 12	$0,472 \times 0,315 \times 2,756$
$\mathbf{8 1}$	$1,574 \mathrm{k} 6$	3,15	M 12	$0,472 \times 0,315 \times 2,756$
$\mathbf{1 0 0}$	$1,968 \mathrm{g6}$	3,23	M 12	$0,551 \times 0,354 \times 2,756$
$\mathbf{1 0 1}$	$1,968 \mathrm{k6}$	3,23	M 12	$0,551 \times 0,354 \times 2,756$

Supplementary description when ordering by designation: nonstandard low speed shaft end, D ... (dimension D Ø).

Oversized B5 flange (low speed shaft)

All gear reducers and gearmotors (sizes $\geqslant 50$) can be supplied with oversized B5 flange (always having through holes) fitted on standard B5 flange. Flange plane coincides with low speed shaft end shoulder.
The gear reducer is to be fastened after having fastened the flange on the machine.
Locking adhesives such as LOCTITE, should be used both on screws and coupling surfaces.

Gear reducer size	\mathbf{F} \varnothing	\mathbf{M} \varnothing	\mathbf{N} \varnothing h6	\mathbf{P} \varnothing	\mathbf{Q}	\mathbf{S}	\mathbf{S}_{1}
$\mathbf{5 0 ,} \mathbf{5 1}$	0,4	6,5	5,118	7,87	0,14	0,5	0,2
$\mathbf{6 3 ,} \mathbf{6 4}$	0,5	8,46	7,087	9,84	0,16	0,6	0,3
$\mathbf{8 0 ,} \mathbf{8 1}$	0,6	10,43	9,055	11,81	0,16	0,6	0,4
$\mathbf{1 0 0 , 1 0 1}$	0,7	11,81	9,843	13,78	0,20	0,7	0,4
$\mathbf{1 2 5 , 1 2 6 , 1 4 0}$	0,78	15,75	13,78	17,72	0,20	0,7	-
$\mathbf{1 6 0 , 1 8 0}$	$0,7^{8}$	19,69	17,717	21,65	0,20	0,8	-

1) Screw type UNI 5931-84

Supplementary description when ordering by designation: oversized B5 flange.

Square flange for servomotors

Gearmotors MR 2I, 3 I sizes 32 ... 101 can be supplied with motor mounting flange when coupling with servomotors; the first reduction pinion directly keyed onto motor shaft end permits to avoid backlash and consequently shock on the same keying
Considering that servomotors do not have any standardized dimensions, when selecting verify all coupling dimensions stated in the table; D dimension determines IEC stardardized motor size in catalogue gearmotor designation (see ch. 3, 8).
For other gearmotor dimensions see ch. 9.
For the verifications of keying, motor mounting flange and motor bearing resistance according to motor performances, speed, mass and length, consult us.

Gear reducer size		$\overline{\mathbf{V}_{1}}$	F	$\underset{\varnothing}{\mathbf{M}_{1}}$	$\begin{gathered} \mathbf{N}_{1} \\ \varnothing \\ \text { h7 } \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{P}_{\varnothing} \end{aligned}$	Q	$\begin{aligned} & \mathbf{D} \\ & \varnothing \end{aligned}$	E
21	31								
$\begin{array}{\|l} 40 \\ 40,41 \end{array}$	$\begin{aligned} & 40,41 \\ & 40 \ldots 51 \end{aligned}$	3,54	M 6	3,94	3,15	4,72	0,16	$\begin{aligned} & 0,43 \\ & 0,55 \end{aligned}$	$\begin{array}{\|l\|} \hline 0,91 \\ 1,18 \end{array}$
$\begin{array}{\|lll} \hline 32 & \\ 40 & & \\ 40 & \ldots & 64 \end{array}$	$\begin{aligned} & - \\ & 50 . . \\ & 50 . . .64 \end{aligned}$	4,13	M 8	4,53	3,74	5,51	0,16	$\begin{aligned} & 0,43 \\ & 0,55 \\ & 0,75 \end{aligned}$	$\begin{aligned} & 0,91 \\ & 1,18 \\ & 1,57 \end{aligned}$
$\begin{array}{\|c} 40 \ldots 51 \\ 40 \ldots 64 \\ 50 \ldots 81 \end{array}$	$\begin{aligned} & 50 \ldots 64 \\ & 50 \ldots 81 \\ & 63 \ldots 81 \end{aligned}$	4,72	M 8	5,12	4,33	6,3	0,18	$\begin{aligned} & 0,55 \\ & 0,75 \\ & 0,94 \end{aligned}$	$\begin{aligned} & \hline 1,18 \\ & 1,57 \\ & 1,97 \end{aligned}$
$\begin{array}{\|l\|} \hline 63 \ldots 81 \\ 63,64 \\ \hline \end{array}$	$\left.\begin{array}{\|l\|} \hline 80,81 \\ 63 \ldots 101 \end{array} \right\rvert\,$	5,71	M 10	6,5	5,12	7,68	0,18	$\begin{aligned} & 0,75 \\ & 0,94 \\ & 1,1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,57 \\ & 1,97 \\ & 2,36 \\ & \hline \end{aligned}$
$80 . .101$	$80 . .101$	7,67	M 12	8,46	7,09	9,84	0,20	1,1	2,36

1) For sizes 40,41 No. 2 M 6 and No. 2 M 8 .

For sizes 50, 51: 2 upper holes of motor flange must be slotted (see ch. 2b)
Supplementary description when ordering by designation: square
flange ... - ... (state V_{1} - D dimension; e.g.: 145-24).

Examples of coaxial servogearmotors with synchronous «brushless» and asynchronous «vector» servomtors of cat. SR.

15 - Accessories and non-standard designs

Design for agitators and aerators

This design has been specifically developed for aerators and agitators. In addition to the rigid and precise monolithic casing, universal mounting, taper roller bearings (sizes $125 \ldots 180$), the main features of this reliable compact and economic design are:

- extended bearing housing to improve radial and axial load ratings (sizes $\geqslant 125$: taper roller bearings) and to reduce overhangs;
- plentiful low speed shaft end diameter;
- double seals on the low speed shaft with chromium plated raceway;
- space between double seals packed with grease and top hat arrangement which acts as water splash guard for aerators;
- oil lubricated bearing on low speed shaft end side; additional stainless steel drain plug to facilitate complete oil drainage; all this ensures total reliability (gear pairs and bearings) during running and minimum maintenance;
- special single compound paint: antirust zinc primer plus blue RAL 5010 DIN 1843 synthetic paint.
Options:
- drip proof cover for motor (standard protection IP 55);
- special dual compound paint;
- remote oil level and/or oil temperature indicator with threshold signal $($ sizes $\geqslant 160)$.

Axial load $F_{\mathrm{a} 2}$ on low speed shaft end can be doubled according to direction of rotation for combinations 2 (as shown in the table) which are to be preferred.

Gear reducer size	C	D	E	$\begin{aligned} & \mathrm{G} \\ & \varnothing \end{aligned}$	$\mathbf{x}$$\approx$1)				
						Axial load $F_{\mathrm{a} 2}$			
80, 81	4,41	1,772 k6	3,23	4,09	-		2	2	1
100, 101	5,39	2,165 m6	3,23	4,96	-	2	1	1	2
125, 126	5,47	2,756 m6	4,13	5,51	0,12	1	2	2	1
140	5,51	3,15 m6	5,12	6,26	0,12	1	2	2	1
160	6,61	3,543 m6	5,12	7,2	0,16	2	1	1	2
180	6,22	3,937 m6	6,5	8,9	0,16	2	1	,	2

1) Thickness of protection disc.

Supplementary description when ordering by designation: design for agitators.

Miscellaneous

- Gearmotors with:
- HFV (also single-phase) brake motor with d.c. safety and/or parking brake (sizes 63 ... 132) having overall dimensions nearly the same of a standard motor and braking torque $M_{\mathrm{f}} \geqslant$ M_{N}, maximum economy; suitable for running with inverter, non-standard designs with axial independent cooling fan and/or encoder (see ch. 2b);
- two-speed motor, HF standard motor, FO and HFV brake motors: 2.4, 2.6, 2.8, 2.12, 4.6, 4.8, 6.8 poles;

- motor featuring: d.c. supply; single-phase; explosion-proof; with second shaft end; with non-standard protection, voltage and frequency; provided with devices against overloads and overheating;
- motor without fan externally cooled by natural convection (sizes $63 . . .112$); design for textile industry.
- MLA and MLS unit, mechanical torque limiter on input shaft, motor sizes 80 ... 200 (180 for MLS).
Mechanical torque limiter unit to be interposed between gear reducer and B5 mounting position motor standardized to IEC (or wide belt or planetary motor-variator) or, in combined units, between the initial gear reducer and the final gear reducer.
Axially ultra-compact design: excellent load bearing with life lubricated double row angular contact ball bearings (motor size \leqslant 112) or "O» disposed taper roller bearings.

The unit protects the drive from accidental overloads by excluding inertia loads transmitted from up-line masses and down-line masses.
LA unit is friction type (friction surfaces without asbestos). When the transmitted torque tends to exceed the setting, the drive "slips" although it remains engaged and transmits torque equal to the limiter setting value; slipping stops as soon as the load returns to normal; in the case of very brief overloads the driven machine will continue normal operation (after decelerating or stopping) without requiring reset procedures.
LS unit is ball type. When the transmitted torque tends to exceed the setting, the drive is "disengaged" so it does not remain connected. The driven machine will therefore stop.
LA and LS units are mechanically interchangeable. On request slide detector. For more details see specific literature.

* on request
- Gearmotors with interposed compact clutch-brake or fluid coupling/brake unit.
- Gear reducers $(i=3,17$ and 6,38$)$ and gearmotors ($i=2$ and 2,55) sizes 100 and 125 with 1 cylindrical gear pair, flange mounting; motor sizes 132 ... 200.
Taper roller bearings on low speed shaft, «O» disposition for high external loads. Minimum axial overall dimensions.

- Semi-flexible low speed shaft couplings.
- Special paint options:
- external, single-compound: antirust zinc primer plus blue RAL 5010 DIN 1843 synthetic paint (excluding 32 ... 41);
- external, dual-compound: dual-compound epoxy-polyamidic antirust primer plus dual-compound blue RAL 5010 DIN 1843 polyurethane enamel;
- internal, dual-compound: unaffected by polyglycol synthetic oils (sizes 100 ... 180).
- Special seal rings; double seal.

This page is intentionally left blank.

2l 50 ... 101

21125 ... 180

3| 50 ... 101

3| 125 ... 180

Solutions for an evolving industry

Rossi S.p.A.

Via Emilia Ovest 915/A

41123 Modena - Italy
Phone +39 059330288

info@rossi.com

www.rossi.com

[^13][^14]
[^0]: 1) To ISO/CD 8579
[^1]: For n_{1} higher than 1400 rpm or lower than 560 rpm , see ch .5 and the table on page 16

 * In case of ambient temperature $>30^{\circ} \mathrm{C}$, consult us for thermal power verification

[^2]: Unless otherwise stated, gear reducers are supplied in mounting positions B3 which,

[^3]: 1) Powers valid for continuous duty $S 1$; increase possible for $S 2 \ldots S 10$ (ch. 2b) in which case M_{2} increases and fs decreases proportionately
) For complete designation when ordering, see ch. 3
 Mounting position B5R (see table ch. 2b)
[^4]: 1) Powers valid for continuous duty $S 1$; increase possible for $S 2 \ldots \mathrm{~S} 10$ (ch. 2b) in which case M_{2} increases and fs decreases proportionately
 2) For complete designation when ordering, see ch. 3.
 ** Mounting position B5R (see table ch. 2b).
[^5]: | 1) Powers valid for continuous duty S1, increase poss |
 | :--- |
 | 2) For complete designation when ordering, see ch. 3 |
 | |

 ** Mounting position B5A (see table ch. 2b)

[^6]: 2) For complete designation when ordering, see ch. 3
[^7]: For complete designation when ordering, see ch. 3

[^8]: 2) For complete designation when ordering, see ch. 3 .
[^9]: 1) Powers valid for continuous duty $S 1$; increase possible for $S 2 \ldots S 10$ (ch. 2b) in which case M_{2} increases and fs decreases proportionately
 2) For complete designation when ordering, see ch. 3.
[^10]: 1) Powers valid for continuous duty S1; increase possible for S2 $\ldots S 10$ (ch. 2b) in which case M_{2} increases and fs decreases proportionately
 2) For complete designation when ordering, see ch. 3 .

 - Mounting position B5R (see table ch. 2b).

[^11]: 1) Powers valid for continuous duty; increase possible
[^12]: Unless otherwise stated, geamotors are supplied in mounting positions B3 or $\mathbf{B 5}$ which, being standard, are omitted from the designation.

[^13]: © Rossi S.p.A. Rossi reserves the right to make any modification whenever to this publication contents. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described.

[^14]: The Customer is responsible for the correct selection and application of product in view of its industrial and/or commercial needs, unless the use has been recommended by technical qualified personnel of Rossi, who were duly informed about Customer's application purposes. In this case all the necessary data required for the selection shall be communicated exactly and in writing by the Customer, stated in the order and confirmed by Rossi. The Customer is always responsible for the safety of product applications. Every care has been taken in the drawing up of the catalog to ensure the accuracy of the information contained in this publication, however Rossi can accept no responsibility for any errors, omissions or outdated data. Due to the constant evolution of the state of the art, Rossi reserves the right to make any modification whenever to this publication contents. The responsibility for the product selection is of the Customer, excluding different agreements duly legalized in writing and undersigned by the Parties.

